Abstract Humans detect faces efficiently from a young age. Face detection is critical for infants to identify and learn from relevant social stimuli in their environments. Faces with eye contact are an especially salient stimulus, and attention to the eyes in infancy is linked to the emergence of later sociality. Despite the importance of both of these early social skills—attending to faces and attending to the eyes—surprisingly little is known about how they interact. We used eye tracking to explore whether eye contact influences infants' face detection. Longitudinally, we examined 2‐, 4‐, and 6‐month‐olds' (N = 65) visual scanning of complex image arrays with human and animal faces varying in eye contact and head orientation. Across all ages, infants displayed superior detection of faces with eye contact; however, this effect varied as a function of species and head orientation. Infants were more attentive to human than animal faces and were more sensitive to eye and head orientation for human faces compared to animal faces. Unexpectedly, human faces with both averted heads and eyes received the most attention. This pattern may reflect the early emergence of gaze following—the ability to look where another individual looks—which begins to develop around this age. Infants may be especially interested in averted gaze faces, providing early scaffolding for joint attention. This study represents the first investigation to document infants' attention patterns to faces systematically varying in their attentional states. Together, these findings suggest that infants develop early, specialized functional conspecific face detection.
more »
« less
Encoding of facial features by single neurons in the human amygdala and hippocampus
Abstract Faces are salient social stimuli that attract a stereotypical pattern of eye movement. The human amygdala and hippocampus are involved in various aspects of face processing; however, it remains unclear how they encode the content of fixations when viewing faces. To answer this question, we employed single-neuron recordings with simultaneous eye tracking when participants viewed natural face stimuli. We found a class of neurons in the human amygdala and hippocampus that encoded salient facial features such as the eyes and mouth. With a control experiment using non-face stimuli, we further showed that feature selectivity was specific to faces. We also found another population of neurons that differentiated saccades to the eyes vs. the mouth. Population decoding confirmed our results and further revealed the temporal dynamics of face feature coding. Interestingly, we found that the amygdala and hippocampus played different roles in encoding facial features. Lastly, we revealed two functional roles of feature-selective neurons: 1) they encoded the salient region for face recognition, and 2) they were related to perceived social trait judgments. Together, our results link eye movement with neural face processing and provide important mechanistic insights for human face perception.
more »
« less
- Award ID(s):
- 2114644
- PAR ID:
- 10383774
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Biology
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2399-3642
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A central challenge in face perception research is to understand how neurons encode face identities. This challenge has not been met largely due to the lack of simultaneous access to the entire face processing neural network and the lack of a comprehensive multifaceted model capable of characterizing a large number of facial features. Here, we addressed this challenge by conducting in silico experiments using a pre-trained face recognition deep neural network (DNN) with a diverse array of stimuli. We identified a subset of DNN units selective to face identities, and these identity-selective units demonstrated generalized discriminability to novel faces. Visualization and manipulation of the network revealed the importance of identity-selective units in face recognition. Importantly, using our monkey and human single-neuron recordings, we directly compared the response of artificial units with real primate neurons to the same stimuli and found that artificial units shared a similar representation of facial features as primate neurons. We also observed a region-based feature coding mechanism in DNN units as in human neurons. Together, by directly linking between artificial and primate neural systems, our results shed light on how the primate brain performs face recognition tasks.more » « less
-
Abstract How the brain encodes, recognizes, and memorizes general visual objects is a fundamental question in neuroscience. Here, we investigated the neural processes underlying visual object perception and memory by recording from 3173 single neurons in the human amygdala and hippocampus across four experiments. We employed both passive-viewing and recognition memory tasks involving a diverse range of naturalistic object stimuli. Our findings reveal a region-based feature code for general objects, where neurons exhibit receptive fields in the high-level visual feature space. This code can be validated by independent new stimuli and replicated across all experiments, including fixation-based analyses with large natural scenes. This region code explains the long-standing visual category selectivity, preferentially enhances memory of encoded stimuli, predicts memory performance, encodes image memorability, and exhibits intricate interplay with memory contexts. Together, region-based feature coding provides an important mechanism for visual object processing in the human brain.more » « less
-
Abstract Individuals with autism spectrum disorder (ASD) experience pervasive difficulties in processing social information from faces. However, the behavioral and neural mechanisms underlying social trait judgments of faces in ASD remain largely unclear. Here, we comprehensively addressed this question by employing functional neuroimaging and parametrically generated faces that vary in facial trustworthiness and dominance. Behaviorally, participants with ASD exhibited reduced specificity but increased inter-rater variability in social trait judgments. Neurally, participants with ASD showed hypo-activation across broad face-processing areas. Multivariate analysis based on trial-by-trial face responses could discriminate participant groups in the majority of the face-processing areas. Encoding social traits in ASD engaged vastly different face-processing areas compared to controls, and encoding different social traits engaged different brain areas. Interestingly, the idiosyncratic brain areas encoding social traits in ASD were still flexible and context-dependent, similar to neurotypicals. Additionally, participants with ASD also showed an altered encoding of facial saliency features in the eyes and mouth. Together, our results provide a comprehensive understanding of the neural mechanisms underlying social trait judgments in ASD.more » « less
-
null (Ed.)Abstract An important question in human face perception research is to understand whether the neural representation of faces is dynamically modulated by context. In particular, although there is a plethora of neuroimaging literature that has probed the neural representation of faces, few studies have investigated what low-level structural and textural facial features parametrically drive neural responses to faces and whether the representation of these features is modulated by the task. To answer these questions, we employed 2 task instructions when participants viewed the same faces. We first identified brain regions that parametrically encoded high-level social traits such as perceived facial trustworthiness and dominance, and we showed that these brain regions were modulated by task instructions. We then employed a data-driven computational face model with parametrically generated faces and identified brain regions that encoded low-level variation in the faces (shape and skin texture) that drove neural responses. We further analyzed the evolution of the neural feature vectors along the visual processing stream and visualized and explained these feature vectors. Together, our results showed a flexible neural representation of faces for both low-level features and high-level social traits in the human brain.more » « less
An official website of the United States government
