skip to main content


Title: Sedimentary DNA and molecular evidence for early human occupation of the Faroe Islands
Abstract

The Faroe Islands, a North Atlantic archipelago between Norway and Iceland, were settled by Viking explorers in the mid-9th century CE. However, several indirect lines of evidence suggest earlier occupation of the Faroes by people from the British Isles. Here, we present sedimentary ancient DNA and molecular fecal biomarker evidence from a lake sediment core proximal to a prominent archaeological site in the Faroe Islands to establish the earliest date for the arrival of people in the watershed. Our results reveal an increase in fecal biomarker concentrations and the first appearance of sheep DNA at 500 CE (95% confidence interval 370-610 CE), pre-dating Norse settlements by 300 years. Sedimentary plant DNA indicates an increase in grasses and the disappearance of woody plants, likely due to livestock grazing. This provides unequivocal evidence for human arrival and livestock disturbance in the Faroe Islands centuries before Viking settlement in the 9th century.

 
more » « less
Award ID(s):
1755125 1850949
NSF-PAR ID:
10383863
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
2
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Islands across the Bahamian Archipelago have been devastated by five major hurricanes from 2010 to 2020 CE, including Category 5 Hurricane Dorian in 2019 that inundated parts of Abaco and Grand Bahama with up to 4 m of surge, killing 84 people and leaving >245 others missing. Up to 1 m relative sea-level rise is estimated for The Bahamas by 2100 CE, which could enhance flooding from weaker storms ( more » « less
  2. Abstract

    Studies along elevational gradients worldwide usually find the highest plant taxa richness in mid-elevation forest belts. Hence, an increase in upper elevation diversity is expected in the course of warming-related treeline rise. Here, we use a time-series approach to infer past taxa richness from sedimentary ancient DNA from the south-eastern Tibetan Plateau over the last ~18,000 years. We find the highest total plant taxa richness during the cool phase after glacier retreat when the area contained extensive and diverse alpine habitats (14–10 ka); followed by a decline when forests expanded during the warm early- to mid-Holocene (10–3.6 ka). Livestock grazing since 3.6 ka promoted plant taxa richness only weakly. Based on these inferred dependencies, our simulation yields a substantive decrease in plant taxa richness in response to warming-related alpine habitat loss over the next centuries. Accordingly, efforts of Tibetan biodiversity conservation should include conclusions from palaeoecological evidence.

     
    more » « less
  3. null (Ed.)
    The first Caribbean settlers were Amerindians from South America. Great Abaco and Grand Bahama, the final islands colonized in the northernmost Bahamas, were inhabited by the Lucayans when Europeans arrived. The timing of Lucayan arrival in the northern Bahamas has been uncertain because direct archaeological evidence is limited. We document Lucayan arrival on Great Abaco Island through a detailed record of vegetation, fire, and landscape dynamics based on proxy data from Blackwood Sinkhole. From about 3,000 to 1,000 y ago, forests dominated by hardwoods and palms were resilient to the effects of hurricanes and cooling sea surface temperatures. The arrival of Lucayans by about 830 CE (2σ range: 720 to 920 CE) is demarcated by increased burning and followed by landscape disturbance and a time-transgressive shift from hardwoods and palms to the modern pine forest. Considering that Lucayan settlements in the southern Bahamian archipelago are dated to about 750 CE (2σ range: 600 to 900 CE), these results demonstrate that Lucayans spread rapidly through the archipelago in less than 100 y. Although precontact landscapes would have been influenced by storms and climatic trends, the most pronounced changes follow more directly from landscape burning and ecosystem shifts after Lucayan arrival. The pine forests of Abaco declined substantially between 1500 and 1670 CE, a period of increased regional hurricane activity, coupled with fires on an already human-impacted landscape. Any future intensification of hurricane activity in the tropical North Atlantic Ocean threatens the sustainability of modern pine forests in the northern Bahamas. 
    more » « less
  4. Abstract

    Most of the US Gulf Coast is composed of barrier islands, peninsulas, chenier plains, and mainland beaches that are the main line of defense for wetlands, estuaries, and urban and industrial centers from rising sea level and severe storms. These wave‐dominated shorelines are currently experiencing widespread erosion. Using newly acquired and existing results from 13 sites spanning south Florida to south Texas, we compare shoreline migration rates during the late Holocene (∼−4000 to 1850 CE) with historical changes since the mid‐19th century. The records show an overall trend of seaward growth during the late Holocene followed by landward migration or a decrease in the rate of growth during historical time. Diminishing offshore sand supply, human alteration of rivers and coastal sand transport, and severe storms have contributed to this change in shoreline trajectory, but their influence has been mostly limited in extent. The most likely cause of this reversal from coastal stability and growth to widespread shoreline retreat is the dramatic historical increase in the rate of sea‐level rise over the past century.

     
    more » « less
  5. Abstract

    The Eocene‐Oligocene transition (EOT) marks the onset of Antarctic glaciation at 33.7 Ma. Although the benthic oxygen isotope record defines the major continental ice sheet expansion, recent sedimentary and geochemical evidence suggests the presence of earlier ephemeral ice sheets. Sediment cores from Ocean Drilling Program Legs 119 and 188 in Prydz Bay provide an archive of conditions in a major drainage system of East Antarctica. We study biomarker and microfossil evidence to discern how the vegetation and climate shifted between 36 and 33 Ma. Pollen was dominated by reworked Permian Glossopterid gymnosperms; however, penecontemporaneous Eocene pollen assemblages indicate that some vegetation survived the glacial advances. At the EOT, brGDGT soil biomarkers indicate abrupt cooling from 13°C to 8°C and soil pH increases from 6.0 to 6.7, suggesting drying which is further supported by plant wax hydrogen and carbon isotopic shifts of 20‰ and 1.1‰, respectively, and evidence for drying from weathering proxies. Although the terrestrial soil biomarker influx mostly precludes the use of TEX86, we find sea surface temperatures of 12°C in the late Eocene cooling to 8°C at the EOT. Marine productivity undergoes a sustained increase after the glacial advance, likely promoted by enhanced ocean circulation. Between the two glacial surge events of the Priabonian Oxygen Maximum at 37.3 Ma and the EOT at 33.7 Ma, we observe warming of 2–5°C at 35.7 and 34.7 Ma, with increase in penecontemporaneous pollen and enhanced marine productivity, capturing the last flickers of Antarctic warmth.

     
    more » « less