skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sedimentary DNA and molecular evidence for early human occupation of the Faroe Islands
Abstract The Faroe Islands, a North Atlantic archipelago between Norway and Iceland, were settled by Viking explorers in the mid-9th century CE. However, several indirect lines of evidence suggest earlier occupation of the Faroes by people from the British Isles. Here, we present sedimentary ancient DNA and molecular fecal biomarker evidence from a lake sediment core proximal to a prominent archaeological site in the Faroe Islands to establish the earliest date for the arrival of people in the watershed. Our results reveal an increase in fecal biomarker concentrations and the first appearance of sheep DNA at 500 CE (95% confidence interval 370-610 CE), pre-dating Norse settlements by 300 years. Sedimentary plant DNA indicates an increase in grasses and the disappearance of woody plants, likely due to livestock grazing. This provides unequivocal evidence for human arrival and livestock disturbance in the Faroe Islands centuries before Viking settlement in the 9th century.  more » « less
Award ID(s):
1755125 1850949
PAR ID:
10383863
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
2
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In Hawaiʻi, tsunamis are often described in orally transmitted legends (moʻolelo). This study examines sedimentary evidence of a possible local submarine landslide-generated tsunami, described in a legend from the south east coast of Maui which originated between the 15th Century CE and the first arrival of Europeans in 1778 CE. Physical evidence for a tsunami, found at the Nu’u Refuge, Maui, is primarily comprised of an extensive coral clast deposit (found 8.5 m above msl and 251 m inland from the shoreline) together with waterworn cobbles which form fracture-embedded wedge clasts in a local basalt escarpment (at up to 8 m above msl). U/Th dating of the coral clasts gives a maximum tsunami deposit age of 1671 CE for the event that may have inspired the local moʻolelo. This depositional sequence is used to characterize the nature of the assumed tsunami in terms of inundation distance, maximum wave runup and minimum flow velocities. A numerical model developed using GeoClaw matches well with the physical evidence. The data and modeling presented here suggest that locallygenerated tsunamis from submarine landslides warrant further research attention as sources of destructive high energy marine inundation events. 
    more » « less
  2. Islands across the Bahamian Archipelago have been devastated by five major hurricanes from 2010 to 2020 CE, including Category 5 Hurricane Dorian in 2019 that inundated parts of Abaco and Grand Bahama with up to 4 m of surge, killing 84 people and leaving >245 others missing. Up to 1 m relative sea-level rise is estimated for The Bahamas by 2100 CE, which could enhance flooding from weaker storms ( 
    more » « less
  3. null (Ed.)
    The first Caribbean settlers were Amerindians from South America. Great Abaco and Grand Bahama, the final islands colonized in the northernmost Bahamas, were inhabited by the Lucayans when Europeans arrived. The timing of Lucayan arrival in the northern Bahamas has been uncertain because direct archaeological evidence is limited. We document Lucayan arrival on Great Abaco Island through a detailed record of vegetation, fire, and landscape dynamics based on proxy data from Blackwood Sinkhole. From about 3,000 to 1,000 y ago, forests dominated by hardwoods and palms were resilient to the effects of hurricanes and cooling sea surface temperatures. The arrival of Lucayans by about 830 CE (2σ range: 720 to 920 CE) is demarcated by increased burning and followed by landscape disturbance and a time-transgressive shift from hardwoods and palms to the modern pine forest. Considering that Lucayan settlements in the southern Bahamian archipelago are dated to about 750 CE (2σ range: 600 to 900 CE), these results demonstrate that Lucayans spread rapidly through the archipelago in less than 100 y. Although precontact landscapes would have been influenced by storms and climatic trends, the most pronounced changes follow more directly from landscape burning and ecosystem shifts after Lucayan arrival. The pine forests of Abaco declined substantially between 1500 and 1670 CE, a period of increased regional hurricane activity, coupled with fires on an already human-impacted landscape. Any future intensification of hurricane activity in the tropical North Atlantic Ocean threatens the sustainability of modern pine forests in the northern Bahamas. 
    more » « less
  4. The densest overflow water from the Nordic Seas passes through the Faroe Bank Channel and contributes to the headwaters to the lower limb of the Atlantic Meridional Overturning Circulation. The upstream pathways of this dense overflow water are not well known. Using data from a high-resolution hydrographic/velocity survey in 2011, as well as long-term moored velocity and shipboard hydrographic measurements north of the Faroe Islands, we present evidence of a current following the continental slope from Iceland toward the Faroe Bank Channel. This narrow current, which we call the Iceland-Faroe Slope Jet (IFSJ), is bottom-intensified and associated with dense water banked up on the slope. North of the Faroe Islands the IFSJ is situated beneath the Faroe Current, and its variability is tightly linked to the flow of Atlantic Water above. The bulk of the IFSJ’s volume transport is confined to a small area in ϴ-S space centered near a potential density anomaly of 28.06 kg m-3. This is slightly denser than the transport mode of the North Icelandic Jet, which follows shallower isobaths along the slope north of Iceland in the opposite direction and feeds the Denmark Strait overflow. However, the similarity of the hydrographic properties suggests that the two currents have a common source. The average transport of water denser than σϴ = 27.8 kg m-3 in the IFSJ is on the order of 1 Sv, which may account for roughly 50% of the overflow through the Faroe Bank Channel. 
    more » « less
  5. Abstract The Eocene‐Oligocene transition (EOT) marks the onset of Antarctic glaciation at 33.7 Ma. Although the benthic oxygen isotope record defines the major continental ice sheet expansion, recent sedimentary and geochemical evidence suggests the presence of earlier ephemeral ice sheets. Sediment cores from Ocean Drilling Program Legs 119 and 188 in Prydz Bay provide an archive of conditions in a major drainage system of East Antarctica. We study biomarker and microfossil evidence to discern how the vegetation and climate shifted between 36 and 33 Ma. Pollen was dominated by reworked Permian Glossopterid gymnosperms; however, penecontemporaneous Eocene pollen assemblages indicate that some vegetation survived the glacial advances. At the EOT, brGDGT soil biomarkers indicate abrupt cooling from 13°C to 8°C and soil pH increases from 6.0 to 6.7, suggesting drying which is further supported by plant wax hydrogen and carbon isotopic shifts of 20‰ and 1.1‰, respectively, and evidence for drying from weathering proxies. Although the terrestrial soil biomarker influx mostly precludes the use of TEX86, we find sea surface temperatures of 12°C in the late Eocene cooling to 8°C at the EOT. Marine productivity undergoes a sustained increase after the glacial advance, likely promoted by enhanced ocean circulation. Between the two glacial surge events of the Priabonian Oxygen Maximum at 37.3 Ma and the EOT at 33.7 Ma, we observe warming of 2–5°C at 35.7 and 34.7 Ma, with increase in penecontemporaneous pollen and enhanced marine productivity, capturing the last flickers of Antarctic warmth. 
    more » « less