skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: CS_Morgan at ImageCLEFmedical 2022 Caption Task: Deep Learning Based Multi-Label Classification and Transformers for Concept Detection & Caption Prediction
This paper describes the participation of Morgan_CS in both Concept Detection and Caption Prediction tasks under the ImageCLEFmedical 2022 Caption task. The task required participants to automatically identifying the presence and location of relevant concepts and composing coherent captions for the entirety of an image in a large corpus which is a subset of the extended Radiology Objects in COntext (ROCO) dataset. Our implementation is motivated by using encoder-decoder based sequence-to-sequence model for caption and concept generation using both pre-trained Text and Vision Transformers (ViTs). In addition, the Concept Detection task is also considered as a multi concept labels classification problem where several deep learning architectures with “sigmoid” activation are used to enable multilabel classification with Keras. We have successfully submitted eight runs for the Concept Detection task and four runs for the Caption Prediction task. For the Concept Detection Task, our best model achieved an F1 score of 0.3519 and for the Caption Prediction Task, our best model achieved a BLEU Score of 0.2549 while using a fusion of Transformers.  more » « less
Award ID(s):
2131207
PAR ID:
10383926
Author(s) / Creator(s):
;
Editor(s):
Faggioli, G.; Ferro, N.; Hanbury, A.; Potthast, M.
Date Published:
Journal Name:
CLEF 2022 – Conference and Labs of the Evaluation Forum, September 5–8, 2022, Bologna, Italy, CEUR Workshop Proceedings (CEUR-WS.org) Proceedings
Volume:
ORCID: 0000-0003-0405-9088 (A. 1); 0000-0002-6924-0390 (A. 2
Page Range / eLocation ID:
http://ceur-ws.org/Vol-3180/
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aliannejadi, M; Faggioli, G; Ferro, N; Vlachos, M. (Ed.)
    This work discusses the participation of CS_Morgan in the Concept Detection and Caption Prediction tasks of the ImageCLEFmedical 2023 Caption benchmark evaluation campaign. The goal of this task is to automatically identify relevant concepts and their locations in images, as well as generate coherent captions for the images. The dataset used for this task is a subset of the extended Radiology Objects in Context (ROCO) dataset. The implementation approach employed by us involved the use of pre-trained Convolutional Neural Networks (CNNs), Vision Transformer (ViT), and Text-to-Text Transfer Transformer (T5) architectures. These models were leveraged to handle the different aspects of the tasks, such as concept detection and caption generation. In the Concept Detection task, the objective was to classify multiple concepts associated with each image. We utilized several deep learning architectures with ‘sigmoid’ activation to enable multilabel classification using the Keras framework. We submitted a total of five (5) runs for this task, and the best run achieved an F1 score of 0.4834, indicating its effectiveness in detecting relevant concepts in the images. For the Caption Prediction task, we successfully submitted eight (8) runs. Our approach involved combining the ViT and T5 models to generate captions for the images. For the caption prediction task, the ranking is based on the BERTScore, and our best run achieved a score of 0.5819 based on generating captions using the fine-tuned T5 model from keywords generated using the pretrained ViT as the encoder. 
    more » « less
  2. Faggioli, G; Ferro, N; Galuščáková, P; de, A (Ed.)
    This working note documents the participation of CS_Morgan in the ImageCLEFmedical 2024 Caption subtasks, focusing on Caption Prediction and Concept Detection challenges. The primary objectives included training, validating, and testing multimodal Artificial Intelligence (AI) models intended to automate the process of generating captions and identifying multi-concepts of radiology images. The dataset used is a subset of the Radiology Objects in COntext version 2 (ROCOv2) dataset and contains image-caption pairs and corresponding Unified Medical Language System (UMLS) concepts. To address the caption prediction challenge, different variants of the Large Language and Vision Assistant (LLaVA) models were experimented with, tailoring them for the medical domain. Additionally, a lightweight Large Multimodal Model (LMM), and MoonDream2, a small Vision Language Model (VLM), were explored. The former is the instruct variant of the Image-aware Decoder Enhanced à la Flamingo with Interleaved Cross-attentionS (IDEFICS) 9B obtained through quantization. Besides LMMs, conventional encoder-decoder models like Vision Generative Pre-trained Transformer 2 (visionGPT2) and Convolutional Neural Network-Transformer (CNN-Transformer) architectures were considered. Consequently, this enabled 10 submissions for the caption prediction task, with the first submission of LLaVA 1.6 on the Mistral 7B weights securing the 2nd position among the participants. This model was adapted using 40.1M parameters and achieved the best performance on the test data across the performance metrics of BERTScore (0.628059), ROUGE (0.250801), BLEU-1 (0.209298), BLEURT (0.317385), METEOR (0.092682), CIDEr (0.245029), and RefCLIPScore (0.815534). For the concept detection task, our single submission based on the ConvMixer architecture—a hybrid approach leveraging CNN and Transformer advantages—ranked 9th with an F1-score of 0.107645. Overall, the evaluations on the test data for the caption prediction task submissions suggest that LMMs, quantized LMMs, and small VLMs, when adapted and selectively fine-tuned using fewer parameters, have ample potential for understanding medical concepts present in images. 
    more » « less
  3. Automatic detection of an individual’s mind-wandering state has implications for designing and evaluating engaging and effective learning interfaces. While it is difficult to differentiate whether an individual is mind-wandering or focusing on the task only based on externally observable behavior, brain-based sensing offers unique insights to internal states. To explore the feasibility, we conducted a study using functional near-infrared spectroscopy (fNIRS) and investigated machine learning classifiers to detect mind-wandering episodes based on fNIRS data, both on an individual level and a group level, specifically focusing on automated window selection to improve classification results. For individual-level classification, by using a moving window method combined with a linear discriminant classifier, we found the best windows for classification and achieved a mean F1-score of 74.8%. For group-level classification, we proposed an individual-based time window selection (ITWS) algorithm to incorporate individual differences in window selection. The algorithm first finds the best window for each individual by using embedded individual-level classifiers and then uses these windows from all participants to build the final classifier. The performance of the ITWS algorithm is evaluated when used with eXtreme gradient boosting, convolutional neural networks, and deep neural networks. Our results show that the proposed algorithm achieved significant improvement compared to the previous state of the art in terms of brain-based classification of mind-wandering, with an average F1-score of 73.2%. This builds a foundation for mind-wandering detection for both the evaluation of multimodal learning interfaces and for future attention-aware systems. 
    more » « less
  4. Deaf and hard of hearing individuals regularly rely on captioning while watching live TV. Live TV captioning is evaluated by regulatory agencies using various caption evaluation metrics. However, caption evaluation metrics are often not informed by preferences of DHH users or how meaningful the captions are. There is a need to construct caption evaluation metrics that take the relative importance of words in transcript into account. We conducted correlation analysis between two types of word embeddings and human-annotated labelled word-importance scores in existing corpus. We found that normalized contextualized word embeddings generated using BERT correlated better with manually annotated importance scores than word2vec-based word embeddings. We make available a pairing of word embeddings and their human-annotated importance scores. We also provide proof-of-concept utility by training word importance models, achieving an F1-score of 0.57 in the 6-class word importance classification task. 
    more » « less
  5. Abstract Background Diabetic retinopathy (DR) is a leading cause of blindness in American adults. If detected, DR can be treated to prevent further damage causing blindness. There is an increasing interest in developing artificial intelligence (AI) technologies to help detect DR using electronic health records. The lesion-related information documented in fundus image reports is a valuable resource that could help diagnoses of DR in clinical decision support systems. However, most studies for AI-based DR diagnoses are mainly based on medical images; there is limited studies to explore the lesion-related information captured in the free text image reports. Methods In this study, we examined two state-of-the-art transformer-based natural language processing (NLP) models, including BERT and RoBERTa, compared them with a recurrent neural network implemented using Long short-term memory (LSTM) to extract DR-related concepts from clinical narratives. We identified four different categories of DR-related clinical concepts including lesions, eye parts, laterality, and severity, developed annotation guidelines, annotated a DR-corpus of 536 image reports, and developed transformer-based NLP models for clinical concept extraction and relation extraction. We also examined the relation extraction under two settings including ‘gold-standard’ setting—where gold-standard concepts were used–and end-to-end setting. Results For concept extraction, the BERT model pretrained with the MIMIC III dataset achieve the best performance (0.9503 and 0.9645 for strict/lenient evaluation). For relation extraction, BERT model pretrained using general English text achieved the best strict/lenient F1-score of 0.9316. The end-to-end system, BERT_general_e2e, achieved the best strict/lenient F1-score of 0.8578 and 0.8881, respectively. Another end-to-end system based on the RoBERTa architecture, RoBERTa_general_e2e, also achieved the same performance as BERT_general_e2e in strict scores. Conclusions This study demonstrated the efficiency of transformer-based NLP models for clinical concept extraction and relation extraction. Our results show that it’s necessary to pretrain transformer models using clinical text to optimize the performance for clinical concept extraction. Whereas, for relation extraction, transformers pretrained using general English text perform better. 
    more » « less