skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Concept Detection and Caption Prediction in ImageCLEFmedical Caption 2023 with Convolutional Neural Networks; Vision and Text-to-Text Transfer Transformers
This work discusses the participation of CS_Morgan in the Concept Detection and Caption Prediction tasks of the ImageCLEFmedical 2023 Caption benchmark evaluation campaign. The goal of this task is to automatically identify relevant concepts and their locations in images, as well as generate coherent captions for the images. The dataset used for this task is a subset of the extended Radiology Objects in Context (ROCO) dataset. The implementation approach employed by us involved the use of pre-trained Convolutional Neural Networks (CNNs), Vision Transformer (ViT), and Text-to-Text Transfer Transformer (T5) architectures. These models were leveraged to handle the different aspects of the tasks, such as concept detection and caption generation. In the Concept Detection task, the objective was to classify multiple concepts associated with each image. We utilized several deep learning architectures with ‘sigmoid’ activation to enable multilabel classification using the Keras framework. We submitted a total of five (5) runs for this task, and the best run achieved an F1 score of 0.4834, indicating its effectiveness in detecting relevant concepts in the images. For the Caption Prediction task, we successfully submitted eight (8) runs. Our approach involved combining the ViT and T5 models to generate captions for the images. For the caption prediction task, the ranking is based on the BERTScore, and our best run achieved a score of 0.5819 based on generating captions using the fine-tuned T5 model from keywords generated using the pretrained ViT as the encoder.  more » « less
Award ID(s):
2131207
PAR ID:
10476132
Author(s) / Creator(s):
; ;
Editor(s):
Aliannejadi, M; Faggioli, G; Ferro, N; Vlachos, M.
Publisher / Repository:
https://ceur-ws.org/Vol-3497/
Date Published:
Journal Name:
Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2023)
ISSN:
1613-0073
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Faggioli, G.; Ferro, N.; Hanbury, A.; Potthast, M. (Ed.)
    This paper describes the participation of Morgan_CS in both Concept Detection and Caption Prediction tasks under the ImageCLEFmedical 2022 Caption task. The task required participants to automatically identifying the presence and location of relevant concepts and composing coherent captions for the entirety of an image in a large corpus which is a subset of the extended Radiology Objects in COntext (ROCO) dataset. Our implementation is motivated by using encoder-decoder based sequence-to-sequence model for caption and concept generation using both pre-trained Text and Vision Transformers (ViTs). In addition, the Concept Detection task is also considered as a multi concept labels classification problem where several deep learning architectures with “sigmoid” activation are used to enable multilabel classification with Keras. We have successfully submitted eight runs for the Concept Detection task and four runs for the Caption Prediction task. For the Concept Detection Task, our best model achieved an F1 score of 0.3519 and for the Caption Prediction Task, our best model achieved a BLEU Score of 0.2549 while using a fusion of Transformers. 
    more » « less
  2. Faggioli, G; Ferro, N; Galuščáková, P; de, A (Ed.)
    This working note documents the participation of CS_Morgan in the ImageCLEFmedical 2024 Caption subtasks, focusing on Caption Prediction and Concept Detection challenges. The primary objectives included training, validating, and testing multimodal Artificial Intelligence (AI) models intended to automate the process of generating captions and identifying multi-concepts of radiology images. The dataset used is a subset of the Radiology Objects in COntext version 2 (ROCOv2) dataset and contains image-caption pairs and corresponding Unified Medical Language System (UMLS) concepts. To address the caption prediction challenge, different variants of the Large Language and Vision Assistant (LLaVA) models were experimented with, tailoring them for the medical domain. Additionally, a lightweight Large Multimodal Model (LMM), and MoonDream2, a small Vision Language Model (VLM), were explored. The former is the instruct variant of the Image-aware Decoder Enhanced à la Flamingo with Interleaved Cross-attentionS (IDEFICS) 9B obtained through quantization. Besides LMMs, conventional encoder-decoder models like Vision Generative Pre-trained Transformer 2 (visionGPT2) and Convolutional Neural Network-Transformer (CNN-Transformer) architectures were considered. Consequently, this enabled 10 submissions for the caption prediction task, with the first submission of LLaVA 1.6 on the Mistral 7B weights securing the 2nd position among the participants. This model was adapted using 40.1M parameters and achieved the best performance on the test data across the performance metrics of BERTScore (0.628059), ROUGE (0.250801), BLEU-1 (0.209298), BLEURT (0.317385), METEOR (0.092682), CIDEr (0.245029), and RefCLIPScore (0.815534). For the concept detection task, our single submission based on the ConvMixer architecture—a hybrid approach leveraging CNN and Transformer advantages—ranked 9th with an F1-score of 0.107645. Overall, the evaluations on the test data for the caption prediction task submissions suggest that LMMs, quantized LMMs, and small VLMs, when adapted and selectively fine-tuned using fewer parameters, have ample potential for understanding medical concepts present in images. 
    more » « less
  3. Evaluating the quality of accessible image captions with human raters is difficult, as it may be difficult for a visually impaired user to know how comprehensive a caption is, whereas a sighted assistant may not know what information a user will need from a caption. To explore how image captioners and caption consumers assess caption content, we conducted a series of collaborative captioning sessions in which six pairs, consisting of a blind person and their sighted partner, worked together to discuss, create, and evaluate image captions. By making captioning a collaborative task, we were able to observe captioning strategies, to elicit questions and answers about image captions, and to explore blind users’ caption preferences. Our findings provide insight about the process of creating good captions and serve as a case study for cross-ability collaboration between blind and sighted people. 
    more » « less
  4. Biomedical images are crucial for diagnosing and planning treatments, as well as advancing scientific understanding of various ailments. To effectively highlight regions of interest (RoIs) and convey medical concepts, annotation markers like arrows, letters, or symbols are employed. However, annotating these images with appropriate medical labels poses a significant challenge. In this study, we propose a framework that leverages multimodal input features, including text/label features and visual features, to facilitate accurate annotation of biomedical images with multiple labels. Our approach integrates state-of-the-art models such as ResNet50 and Vision Transformers (ViT) to extract informative features from the images. Additionally, we employ Generative Pre-trained Distilled-GPT2 (Transformer based Natural Language Processing architecture) to extract textual features, leveraging their natural language understanding capabilities. This combination of image and text modalities allows for a more comprehensive representation of the biomedical data, leading to improved annotation accuracy. By combining the features extracted from both image and text modalities, we trained a simplified Convolutional Neural Network (CNN) based multi-classifier to learn the image-text relations and predict multi-labels for multi-modal radiology images. We used ImageCLEFmedical 2022 and 2023 datasets to demonstrate the effectiveness of our framework. This dataset likely contains a diverse range of biomedical images, enabling the evaluation of the framework’s performance under realistic conditions. We have achieved promising results with the F1 score of 0.508. Our proposed framework exhibits potential performance in annotating biomedical images with multiple labels, contributing to improved image understanding and analysis in the medical image processing domain. 
    more » « less
  5. null (Ed.)
    We propose JECL, a method for clustering image-caption pairs by training parallel encoders with regularized clustering and alignment objectives, simultaneously learning both representations and cluster assignments. These image-caption pairs arise frequently in high-value applications where structured training data is expensive to produce, but free-text descriptions are common. JECL trains by minimizing the Kullback-Leibler divergence between the distribution of the images and text to that of a combined joint target distribution and optimizing the Jensen-Shannon divergence between the soft cluster assignments of the images and text. Regularizers are also applied to JECL to prevent trivial solutions. Experiments show that JECL outperforms both single-view and multi-view methods on large benchmark image-caption datasets, and is remarkably robust to missing captions and varying data sizes. 
    more » « less