skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Passive ground-based remote sensing of radiation fog
Abstract. Accurate boundary layer temperature and humidity profiles are crucial for successful forecasting of fog, and accurate retrievals of liquid water path are important for understanding the climatological significance of fog. Passive ground-based remote sensing systems such as microwave radiometers (MWRs) and infrared spectrometers like the Atmospheric Emitted Radiance Interferometer (AERI), which measures spectrally resolved infrared radiation (3.3 to 19.2 µm), can retrieve both thermodynamic profiles and liquid water path. Both instruments are capable of long-term unattended operation and have the potential to support operational forecasting. Here we compare physical retrievals of boundary layer thermodynamic profiles and liquid water path during 12 cases of thin (LWP<40 g m−2) supercooled radiation fog from an MWR and an AERI collocated in central Greenland. We compare both sets of retrievals to in-situ measurements from radiosondes and surface-based temperature and humidity sensors. The retrievals based on AERI observations accurately capture shallow surface-based temperature inversions (0–10 m a.g.l.) with lapse rates of up to −1.2 ∘C m−1, whereas the strength of the surface-based temperature inversions retrieved from MWR observations alone are uncorrelated with in-situ measurements, highlighting the importance of constraining MWR thermodynamic profile retrievals with accurate surface meteorological data. The retrievals based on AERI observations detect fog onset (defined by a threshold in liquid water path) earlier than those based on MWR observations by 25 to 185 min. We propose that, due to the high sensitivity of the AERI instrument to near-surface temperature and small changes in liquid water path, the AERI (or an equivalent infrared spectrometer) could be a useful instrument for improving fog monitoring and nowcasting, particularly for cases of thin radiation fog under otherwise clear skies, which can have important radiative impacts at the surface.  more » « less
Award ID(s):
1801764 2137083
PAR ID:
10383930
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
15
Issue:
17
ISSN:
1867-8548
Page Range / eLocation ID:
5095 to 5115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study examines the effect of surface moisture flux on fog formation, as it is an essential factor of water vapor distribution that supports fog formation. A one‐way nested large‐eddy simulation embedded in the mesoscale community Weather Research and Forecasting model is used to examine the effect of surface moisture flux on a cold fog event over the Heber Valley on January 16, 2015. Results indicate that large‐eddy simulation successfully reproduces the fog over the mountainous valley, with turbulent mixing of the fog aloft in the valley downward. However, the simulated fog is too dense and has higher humidity, a larger mean surface moisture flux, more extensive liquid water content, and longer duration relative to the observations. The sensitivity of fog simulations to surface moisture flux is then examined. Results indicate that reduction of surface moisture flux leads to fog with a shorter duration and a lower height extension than the original simulation, as the decrease in surface moisture flux impairs water vapor transport from the surface. Consequently, the lower humidity combined with the cold air helps the model reproduce a realistic thin fog close to the observations. The outcomes of this study illustrate that a minor change in moisture flux can have a significant impact on the formation and evolution of fog events over complex terrain, even during the winter when moisture flux is typically very weak. 
    more » « less
  2. Abstract Supercooled fogs can have an important radiative impact at the surface of the Greenland Ice Sheet, but they are difficult to detect and our understanding of the factors that control their lifetime and radiative properties is limited by a lack of observations. This study demonstrates that spectrally resolved measurements of downwelling longwave radiation can be used to generate retrievals of fog microphysical properties (phase and particle effective radius) when the fog visible optical depth is greater than ∼0.25. For 12 cases of fog under otherwise clear skies between June and September 2019 at Summit Station in central Greenland, nine cases were mixed‐phase. The mean ice particle (optically‐equivalent sphere) effective radius was 24.0 ± 7.8 µm, and the mean liquid droplet effective radius was 14.0 ± 2.7 µm. These results, combined with measurements of aerosol particle number concentrations, provide evidence supporting the hypotheses that (a) low surface aerosol particle number concentrations can limit fog liquid water path, (b) fog can act to increase near‐surface aerosol particle number concentrations through enhanced mixing, and (c) multiple fog events in quiescent periods gradually deplete near‐surface aerosol particle number concentrations. 
    more » « less
  3. Abstract Clouds have a large effect on the radiation budget and represent a major source of uncertainty in climate models. Supercooled liquid clouds can exist at temperatures as low as 235 K, and the radiative effect of these clouds depends on the complex refractive index (CRI) of liquid water. Laboratory measurements have demonstrated that the liquid‐water CRI is temperature‐dependent, but corroboration with field measurements is difficult. Here we present measurements of the downwelling infrared radiance and in‐situ measurements of supercooled liquid water in a cloud at temperatures as low as 240 K, made at South Pole Station in 2001. These results demonstrate that including the temperature dependence of the liquid‐water CRI is essential for accurate calculations of radiative transfer through supercooled liquid clouds. Furthermore, we show that when cloud properties are retrieved from infrared radiances (using the spectral range 500–1,200 cm−1) spurious ice may be retrieved if the 300 K CRI is used for cold liquid clouds (∼240 K). These results have implications for radiative transfer in climate models as well as for retrievals of cloud properties from infrared radiance spectra. 
    more » « less
  4. Abstract. One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2–4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90%, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper. 
    more » « less
  5. null (Ed.)
    The launch of the National Oceanic and Atmospheric Administration (NOAA)/ National Aeronautics and Space Administration (NASA) Suomi National Polar-orbiting Partnership (S-NPP) and its follow-on NOAA Joint Polar Satellite Systems (JPSS) satellites marks the beginning of a new era of operational satellite observations of the Earth and atmosphere for environmental applications with high spatial resolution and sampling rate. The S-NPP and JPSS are equipped with five instruments, each with advanced design in Earth sampling, including the Advanced Technology Microwave Sounder (ATMS), the Cross-track Infrared Sounder (CrIS), the Ozone Mapping and Profiler Suite (OMPS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and the Clouds and the Earth’s Radiant Energy System (CERES). Among them, the ATMS is the new generation of microwave sounder measuring temperature profiles from the surface to the upper stratosphere and moisture profiles from the surface to the upper troposphere, while CrIS is the first of a series of advanced operational hyperspectral sounders providing more accurate atmospheric and moisture sounding observations with higher vertical resolution for weather and climate applications. The OMPS instrument measures solar backscattered ultraviolet to provide information on the concentrations of ozone in the Earth’s atmosphere, and VIIRS provides global observations of a variety of essential environmental variables over the land, atmosphere, cryosphere, and ocean with visible and infrared imagery. The CERES instrument measures the solar energy reflected by the Earth, the longwave radiative emission from the Earth, and the role of cloud processes in the Earth’s energy balance. Presently, observations from several instruments on S-NPP and JPSS-1 (re-named NOAA-20 after launch) provide near real-time monitoring of the environmental changes and improve weather forecasting by assimilation into numerical weather prediction models. Envisioning the need for consistencies in satellite retrievals, improving climate reanalyses, development of climate data records, and improving numerical weather forecasting, the NOAA/Center for Satellite Applications and Research (STAR) has been reprocessing the S-NPP observations for ATMS, CrIS, OMPS, and VIIRS through their life cycle. This article provides a summary of the instrument observing principles, data characteristics, reprocessing approaches, calibration algorithms, and validation results of the reprocessed sensor data records. The reprocessing generated consistent Level-1 sensor data records using unified and consistent calibration algorithms for each instrument that removed artificial jumps in data owing to operational changes, instrument anomalies, contaminations by anomaly views of the environment or spacecraft, and other causes. The reprocessed sensor data records were compared with and validated against other observations for a consistency check whenever such data were available. The reprocessed data will be archived in the NOAA data center with the same format as the operational data and technical support for data requests. Such a reprocessing is expected to improve the efficiency of the use of the S-NPP and JPSS satellite data and the accuracy of the observed essential environmental variables through either consistent satellite retrievals or use of the reprocessed data in numerical data assimilations. 
    more » « less