skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1929296

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mayrose, Itay (Ed.)
    Abstract Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes. 
    more » « less
  2. PremiseWe tested 25 classic and novel hypotheses regarding trait–origin, trait–trait, and trait–environment relationships to account for flora‐wide variation in life history, habit, and especially reproductive traits using a plastid DNA phylogeny of most native (96.6%, or 1494/1547 species) and introduced (87.5%, or 690/789 species) angiosperms in Wisconsin, USA. MethodsWe assembled data on life history, habit, flowering, dispersal, mating system, and occurrence across open/closed/mixed habitats across species in the state phylogeny. We used phylogenetically structured analyses to assess the strength and statistical significance of associations predicted by our models. ResultsIntroduced species are more likely to be annual herbs, occupy open habitats, have large, visually conspicuous, hermaphroditic flowers, and bear passively dispersed seeds. Among native species, hermaphroditism is associated with larger, more conspicuous flowers; monoecy is associated with small, inconspicuous flowers and passive seed dispersal; and dioecy is associated with small, inconspicuous flowers and fleshy fruits. Larger flowers with more conspicuous colors are more common in open habitats, and in understory species flowering under open (spring) canopies; fleshy fruits are more common in closed habitats. Wind pollination may help favor dioecy in open habitats. ConclusionsThese findings support predictions regarding how breeding systems depend on flower size, flower color, and fruit type, and how those traits depend on habitat. This study is the first to combine flora‐wide phylogenies with complete trait databases and phylogenetically structured analyses to provide powerful tests of evolutionary hypotheses about reproductive traits and their variation with geographic source, each other, and environmental conditions. 
    more » « less
  3. Abstract Previous meta‐analyses suggested that carnivorous plants—despite access to N, P, and K from prey—have significantly lower leaf concentrations of these nutrients than noncarnivores. Those studies, however, largely compared carnivores in nutrient‐poor habitats with noncarnivores in more nutrient‐rich sites, so that the differences reported might reflect habitat differences as much as differences in nutrient‐capture strategy. Here we examine three carnivorous and 12 noncarnivorous plants in the same nutrient‐poor bog to compare their foliar nutrient concentrations, assess their patterns of nutrient limitation using leaf NPK stoichiometry, and estimate percentage N derived from prey by carnivores using a mixing model for stable N isotopes. We hypothesized that (1) carnivore leaf nutrient concentrations approach or exceed those of noncarnivores in the same nutrient‐poor habitat; (2) species in different functional groups show different patterns of stoichiometry and apparent nutrient limitation; and (3) noncarnivores might show evidence of using other means of nutrient acquisition or conservation to reduce nutrient limitation. At Fallison Bog in northern Wisconsin, carnivorous plants (Drosera rotundifolia,Sarracenia purpurea,Utricularia macrorhiza) showed significantly lower leaf percentage C and N:P ratio, higher δ15N, and no difference from noncarnivores in leaf N, P, K, and δ13C. Sedges had significantly lower leaf percentage P, percentage C, and N:K ratio, and higher K:P ratio than nonsedges restricted to theSphagnummat, and may tap peat N via aerenchyma‐facilitated peat oxidation (oxipeditrophy). Evergreen ericaceous shrubs exhibited significantly higher levels of percentage C and lower values of δ15N than mat nonericads.Calla palustris—growing in the nutrient‐rich moat at the bog's upland edge—had very high values of leaf N, K, δ15N, and N:P ratio, suggesting that it may obtain nutrients from minerotrophic flows from the adjacent uplands and/or rapidly decaying peat. Stoichiometric analyses indicated that most species are N limited. A mixing model applied to δ15N values for carnivores, noncarnivores, and insects produced an estimate of 50% of leaf N derived from prey forUtricularia, 42% forSarracenia, and 41% forDrosera. 
    more » « less
  4. Free, publicly-accessible full text available October 24, 2025
  5. Free, publicly-accessible full text available October 8, 2025
  6. Schemske, D (Ed.)
    We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness inCalochortus(Liliaceae, 74 spp.).Calochortusoccupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades—inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)—began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence. 
    more » « less