skip to main content

This content will become publicly available on October 31, 2023

Title: Planning for Automated Vehicles with Human Trust
Recent work has considered personalized route planning based on user profiles, but none of it accounts for human trust. We argue that human trust is an important factor to consider when planning routes for automated vehicles. This article presents a trust-based route-planning approach for automated vehicles. We formalize the human-vehicle interaction as a partially observable Markov decision process (POMDP) and model trust as a partially observable state variable of the POMDP, representing the human’s hidden mental state. We build data-driven models of human trust dynamics and takeover decisions, which are incorporated in the POMDP framework, using data collected from an online user study with 100 participants on the Amazon Mechanical Turk platform. We compute optimal routes for automated vehicles by solving optimal policies in the POMDP planning and evaluate the resulting routes via human subject experiments with 22 participants on a driving simulator. The experimental results show that participants taking the trust-based route generally reported more positive responses in the after-driving survey than those taking the baseline (trust-free) route. In addition, we analyze the trade-offs between multiple planning objectives (e.g., trust, distance, energy consumption) via multi-objective optimization of the POMDP. We also identify a set of open issues and implications more » for real-world deployment of the proposed approach in automated vehicles. « less
; ; ; ; ; ;
Award ID(s):
1755784 1942836
Publication Date:
Journal Name:
ACM Transactions on Cyber-Physical Systems
Page Range or eLocation-ID:
1 to 21
Sponsoring Org:
National Science Foundation
More Like this
  1. Using the context of human-supervised object collection tasks, we explore policies for a robot to seek assistance from a human supervisor and avoid loss of human trust in the robot. We consider a human-robot interaction scenario in which a mobile manipulator chooses to collect objects either autonomously or through human assistance; while the human supervisor monitors the robot’s operation, assists when asked, or intervenes if the human perceives that the robot may not accomplish its goal. We design an optimal assistance-seeking policy for the robot using a Partially Observable Markov Decision Process (POMDP) setting in which human trust is a hidden state and the objective is to maximize collaborative performance. We conduct two sets of human-robot interaction experiments. The data from the first set of experiments is used to estimate POMDP parameters, which are used to compute an optimal assistance-seeking policy that is used in the second experiment. For most participants, the estimated POMDP reveals that humans are more likely to intervene when their trust is low and the robot is performing a high-complexity task; and that the robot asking for assistance in high-complexity tasks can increase human trust in the robot. Our experimental results show that the proposed trust-awaremore »policy yields superior performance compared with an optimal trust-agnostic policy.« less
  2. This work presents novel techniques for tightly integrated online information fusion and planning in human-autonomy teams operating in partially known environments. Motivated by dynamic target search problems, we present a new map-based sketch interface for online soft-hard data fusion. This interface lets human collaborators efficiently update map information and continuously build their own highly flexible ad hoc dictionaries for making language-based semantic observations, which can be actively exploited by autonomous agents in optimal search and information gathering problems. We formally link these capabilities to POMDP algorithms for optimal planning under uncertainty, and develop a new Dynamically Observable Monte Carlo planning (DOMCP) algorithm as an efficient means for updating online sampling-based planning policies for POMDPs with non-static observation models. DOMCP is validated on a small scale robot localization problem, and then demonstrated with our new user interface on a simulated dynamic target search scenario in a partially known outdoor environment.
  3. Cancer screening is a large, population-based intervention that would benefit from tools enabling individually-tailored decision making to decrease unintended consequences such as overdiagnosis. The heterogeneity of cancer screening participants advocates the need for more personalized approaches. Partially observable Markov decision processes (POMDPs) can be used to suggest optimal, individualized screening policies. However, determining an appropriate reward function can be challenging. Here, we propose the use of inverse reinforcement learning (IRL) to form rewards functions for lung and breast cancer screening POMDP models. Using data from the National Lung Screening Trial and our institution's breast screening registry, we developed two POMDP models with corresponding reward functions. Specifically, the maximum entropy (MaxEnt) IRL algorithm with an adaptive step size was used to learn rewards more efficiently; and combined with a multiplicative model to learn state-action pair rewards in the POMDP. The lung and breast cancer screening models were evaluated based on their ability to recommend appropriate screening decisions before the diagnosis of cancer. Results are comparable with experts' decisions. The lung POMDP demonstrated an improved performance in terms of recall and false positive rate in the second screening and post-screening stages. Precision (0.02-0.05) was comparable to experts' (0.02-0.06). The breast POMDP hasmore »excellent recall (0.97-1.00), matching the physicians and a satisfactory false positive rate (<0.03). The reward functions learned with the MaxEnt IRL algorithm, when combined with POMDP models in lung and breast cancer screening, demonstrate performance comparable to experts.« less
  4. This paper presents a hybrid online Partially Observable Markov Decision Process (POMDP) planning system that addresses the problem of autonomous navigation in the presence of multi-modal uncertainty introduced by other agents in the environment. As a particular example, we consider the problem of autonomous navigation in dense crowds of pedestrians and among obstacles. Popular approaches to this problem first generate a path using a complete planner (e.g., Hybrid A*) with ad-hoc assumptions about uncertainty, then use online tree-based POMDP solvers to reason about uncertainty with control over a limited aspect of the problem (i.e. speed along the path). We present a more capable and responsive real-time approach enabling the POMDP planner to control more degrees of freedom (e.g., both speed AND heading) to achieve more flexible and efficient solutions. This modification greatly extends the region of the state space that the POMDP planner must reason over, significantly increasing the importance of finding effective roll-out policies within the limited computational budget that real time control affords. Our key insight is to use multi-query motion planning techniques (e.g., Probabilistic Roadmaps or Fast Marching Method) as priors for rapidly generating efficient roll-out policies for every state that the POMDP planning tree might reachmore »during its limited horizon search. Our proposed approach generates trajectories that are safe and significantly more efficient than the previous approach, even in densely crowded dynamic environments with long planning horizons.« less
  5. In the present paper, we present a user study with an advanced-driver assistance system (ADAS) using augmented reality (AR) cues to highlight pedestrians and vehicles when approaching intersections of varying complexity. Our major goal is to understand the relationship between the presence and absence of AR, driver-initiated takeover rates and glance behavior when using a SAE Level 2 autonomous vehicle. Therefore, a user-study with eight participants on a medium-fidelity driving simulator was carried out. Overall, we found that AR cues can provide promising means to increase the system transparency, drivers’ situation awareness and trust in the system. Yet, we suggest that the dynamic glance allocation of attention during partially automated vehicles is still challenging for researchers as we still have much to understand and explore when AR cues become a distractor instead of an attention guider.