skip to main content


Title: Mechanisms of a Meteorological Drought Onset: Summer 2020 to Spring 2021 in Southwestern North America
Abstract By summer 2021 moderate to exceptional drought impacted 28% of North America, focused west of the Mississippi, with serious impacts on fire, water resources, and agriculture. Here, using reanalyses and SST-forced climate models, we examine the onset and development of this southwestern drought from its inception in summer 2020 through winter and spring 2020/21. The drought severity in summer 2021 resulted from four consecutive prior seasons in which precipitation in the southwest United States was the lowest on record or, at least, extremely dry. The dry conditions in summer 2020 arose from internal atmospheric variability but are beyond the range of what the studied atmosphere models simulate for that season. From winter 2020 through spring 2021 the worsening drought conditions were guided by the development of a La Niña in the tropical Pacific Ocean. Decadal variability in the Pacific Ocean aided drought in the southern part of the region by driving the cool season to be drier during the last two decades. There is also evidence that the southern part of the region in spring is drying due to human-driven climate change. In sum the drought onset was driven by a combination of internal atmospheric variability and interannual climate variability and aided by natural decadal variability and human-driven climate change.  more » « less
Award ID(s):
2127684 2101214
NSF-PAR ID:
10384047
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
22
ISSN:
0894-8755
Page Range / eLocation ID:
3767 to 3785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mechanisms of drought onset and termination are examined across North America with a focus on the southern Plains using data from land surface models and regional and global reanalyses for 1979–2017. Continental-scale analysis of covarying patterns reveals a tight coupling between soil moisture change over time and intervening precipitation anomalies. The southern Great Plains are a geographic center of patterns of hydrologic change. Drying is induced by atmospheric wave trains that span the Pacific and North America and place northerly flow anomalies above the southern Plains. In the southern Plains winter is least likely, and fall most likely, for drought onset and spring is least likely, and fall or summer most likely, for drought termination. Southern Plains soil moisture itself, which integrates precipitation over time, has a clear relationship to tropical Pacific sea surface temperature (SST) anomalies with cold conditions favoring dry soils. Soil moisture change, however, though clearly driven by precipitation, has a weaker relation to SSTs and a strong relation to internal atmospheric variability. Little evidence is found of connection of drought onset and termination to driving by temperature anomalies. An analysis of particular drought onsets and terminations on the seasonal time scale reveals commonalities in terms of circulation and moisture transport anomalies over the southern Plains but a variety of ways in which these are connected into the large-scale atmosphere and ocean state. Some onsets are likely to be quite predictable due to forcing by cold tropical Pacific SSTs (e.g., fall 2010). Other onsets and all terminations are likely not predictable in terms of ocean conditions.

     
    more » « less
  2. The spring dry season occurring in an arid region of the southwestern United States, which receives both winter storm track and summer monsoon precipitation, is investigated. Bimodal precipitation and vegetation growth provide an opportunity to assess multiple climate mechanisms and their impact on hydroclimate and ecosystems. We detect multiple shifts from wet to drier conditions in the observational record and land surface model output. Focusing on the recent dry period, a shift in the late 1990s resulted in earlier and greater spring soil moisture draw down, and later and reduced spring vegetation green-up, compared to a prior wet period (1979–97). A simple soil moisture balance model shows this shift is driven by changes in winter precipitation. The recent post-1999 dry period and an earlier one from 1948 to 1966 are both related to the cool tropics phase of Pacific decadal variability, which influences winter precipitation. In agreement with other studies for the southwestern United States, we find the recent drought cannot be explained in terms of precipitation alone, but also is due to the rising influence of temperature, thus highlighting the sensitivity of this region to warming temperatures. Future changes in the spring dry season will therefore be affected by how tropical decadal variability evolves, and also by emerging trends due to human-driven warming.

     
    more » « less
  3. Abstract

    The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century.

     
    more » « less
  4. Abstract Recent record-breaking wildfire seasons in California prompt an investigation into the climate patterns that typically precede anomalous summer burned forest area. Using burned-area data from the U.S. Forest Service’s Monitoring Trends in Burn Severity (MTBS) product and climate data from the fifth major global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5) over 1984–2018, relationships between the interannual variability of antecedent climate anomalies and July California burned area are spatially and temporally characterized. Lag correlations show that antecedent high vapor pressure deficit (VPD), high temperatures, frequent extreme high temperature days, low precipitation, high subsidence, high geopotential height, low soil moisture, and low snowpack and snowmelt anomalies all correlate significantly with July California burned area as far back as the January before the fire season. Seasonal regression maps indicate that a global midlatitude atmospheric wave train in late winter is associated with anomalous July California burned area. July 2018, a year with especially high burned area, was to some extent consistent with the general patterns revealed by the regressions: low winter precipitation and high spring VPD preceded the extreme burned area. However, geopotential height anomaly patterns were distinct from those in the regressions. Extreme July heat likely contributed to the extent of the fires ignited that month, even though extreme July temperatures do not historically significantly correlate with July burned area. While the 2018 antecedent climate conditions were typical of a high-burned-area year, they were not extreme, demonstrating the likely limits of statistical prediction of extreme fire seasons and the need for individual case studies of extreme years. Significance Statement The purpose of this study is to identify the local and global climate patterns in the preceding seasons that influence how the burned summer forest area in California varies year-to-year. We find that a dry atmosphere, high temperatures, dry soils, less snowpack, low precipitation, subsiding air, and high pressure centered west of California all correlate significantly with large summer burned area as far back as the preceding January. These climate anomalies occur as part of a hemispheric scale pattern with weak connections to the tropical Pacific Ocean. We also describe the climate anomalies preceding the extreme and record-breaking burned-area year of 2018, and how these compared with the more general patterns found. These results give important insight into how well and how early it might be possible to predict the severity of an upcoming summer wildfire season in California. 
    more » « less
  5. Mediterranean-type climates are defined by temperate, wet winters, and hot or warm dry summers and exist at the western edges of five continents in locations determined by the geography of winter storm tracks and summer subtropical anticyclones. The climatology, variability, and long-term changes in winter precipitation in Mediterranean-type climates, and the mechanisms for model-projected near-term future change, are analyzed. Despite commonalities in terms of location in the context of planetary-scale dynamics, the causes of variability are distinct across the regions. Internal atmospheric variability is the dominant source of winter precipitation variability in all Mediterranean-type climate regions, but only in the Mediterranean is this clearly related to annular mode variability. Ocean forcing of variability is a notable influence only for California and Chile. As a consequence, potential predictability of winter precipitation variability in the regions is low. In all regions, the trend in winter precipitation since 1901 is similar to that which arises as a response to changes in external forcing in the models participating in phase 5 of the Coupled Model Intercomparison Project. All Mediterranean-type climate regions, except in North America, have dried and the models project further drying over coming decades. In the Northern Hemisphere, dynamical processes are responsible: development of a winter ridge over the Mediterranean that suppresses precipitation and of a trough west of the North American west coast that shifts the Pacific storm track equatorward. In the Southern Hemisphere, mixed dynamic–thermodynamic changes are important that place a minimum in vertically integrated water vapor change at the coast and enhance zonal dry advection into Mediterranean-type climate regions inland.

     
    more » « less