skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2101214

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Anthropogenic climate change has already affected drought severity and risk across many regions, and climate models project additional increases in drought risk with future warming. Historically, droughts are typically caused by periods of below‐normal precipitation and terminated by average or above‐normal precipitation. In many regions, however, soil moisture is projected to decrease primarily through warming‐driven increases in evaporative demand, potentially affecting the ability of negative precipitation anomalies to cause drought and positive precipitation anomalies to terminate drought. Here, we use climate model simulations from Phase Six of the Coupled Model Intercomparison Project (CMIP6) to investigate how different levels of warming (1, 2, and 3°C) affect the influence of precipitation on soil moisture drought in the Mediterranean and Western North America regions. We demonstrate that the same monthly precipitation deficits (25th percentile relative to a preindustrial baseline) at a global warming level of 2°C increase the probability of both surface and rootzone soil moisture drought by 29% in the Mediterranean and 32% and 6% in Western North America compared to the preindustrial baseline. Furthermore, the probability of a dry (25th percentile relative to a preindustrial baseline) surface soil moisture month given a high (75th percentile relative to a preindustrial baseline) precipitation month is 6 (Mediterranean) and 3 (Western North America) times more likely in a 2°C world compared to the preindustrial baseline. For these regions, warming will likely increase the risk of soil moisture drought during low precipitation periods while simultaneously reducing the efficacy of high precipitation periods to terminate droughts. 
    more » « less
  2. Abstract The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century. 
    more » « less
  3. Abstract Austral summer precipitation increased by 27% from 1902 to 2020 over southeastern South America (SESA), one of the largest centennial precipitation trends observed globally. We assess the influence of the South American low‐level jet on the SESA precipitation trend by analyzing low‐level moisture fluxes into SESA in two reanalysis datasets from 1951 to 2020. Increased moisture flux through the jet accounts for 20%–45% of the observed SESA precipitation trend. While results vary among reanalyzes, both point to increased humidity as a fundamental driver of increased moisture flux and SESA precipitation. Increased humidity within the jet is consistent with warming sea surface temperatures driven by anthropogenic forcing, although additional natural climate variations also may have played a role. The jet's velocity also increased, further enhancing precipitation, but without a clear connection to anthropogenic forcing. Our findings indicate the SESA precipitation trend is partly attributable to jet intensification arising from both natural variability and anthropogenic forcing. 
    more » « less
  4. Across western North America (WNA), 20th-21st century anthropogenic warming has increased the prevalence and severity of concurrent drought and heat events, also termed hot droughts. However, the lack of independent spatial reconstructions of both soil moisture and temperature limits the potential to identify these events in the past and to place them in a long-term context. We develop the Western North American Temperature Atlas (WNATA), a data-independent 0.5° gridded reconstruction of summer maximum temperatures back to the 16th century. Our evaluation of the WNATA with existing hydroclimate reconstructions reveals an increasing association between maximum temperature and drought severity in recent decades, relative to the past five centuries. The synthesis of these paleo-reconstructions indicates that the amplification of the modern WNA megadrought by increased temperatures and the frequency and spatial extent of compound hot and dry conditions in the 21st century are likely unprecedented since at least the 16th century. 
    more » « less
  5. Abstract. The Medieval Climate Anomaly (MCA; ca. 950–1250 CE) and the Little Ice Age (LIA; ca. 1450–1850 CE) were periods generally characterized by respectively higher and lower temperatures in many regions. However, they have also been associated with drier and wetter conditions in areas around the Intertropical Convergence Zone (ITCZ) and the Asian Monsoon region and in areas impacted by large-scale climatic modes like the Northern Annular Mode and Southern Annular Mode (NAM and SAM respectively). To analyze coordinated changes in large-scale hydroclimate patterns and whether similar changes also extend to other periods of the Last Millennium (LM) outside the MCA and the LIA, reconstruction-based products have been analyzed. This includes the collection of tree-ring-based drought atlases (DAs), the Paleo Hydrodynamics Data Assimilation product (PHYDA) and the Last Millennium Reanalysis (LMR). These analyses have shown coherent changes in the hydroclimate of tropical and extratropical regions, such as northern and central South America, East Africa, western North America, western Europe, the Middle East, Southeast Asia, and the Indo-Pacific, during the MCA, the LIA and other periods of the LM. Comparisons with model simulations from the Community Earth System Model – Last Millennium Ensemble (CESM-LME) and phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6) show that both external forcing and internal variability contributed to these changes, with the contribution of internal variability being particularly important in the Indo-Pacific basin and that of external forcing in the Atlantic basin. These results may help to identify not only those areas showing coordinated changes, but also those regions more impacted by the internal variability, where forced model simulations would not be expected to successfully reproduce the evolution of past actual hydroclimate changes. 
    more » « less
  6. Abstract By summer 2021 moderate to exceptional drought impacted 28% of North America, focused west of the Mississippi, with serious impacts on fire, water resources, and agriculture. Here, using reanalyses and SST-forced climate models, we examine the onset and development of this southwestern drought from its inception in summer 2020 through winter and spring 2020/21. The drought severity in summer 2021 resulted from four consecutive prior seasons in which precipitation in the southwest United States was the lowest on record or, at least, extremely dry. The dry conditions in summer 2020 arose from internal atmospheric variability but are beyond the range of what the studied atmosphere models simulate for that season. From winter 2020 through spring 2021 the worsening drought conditions were guided by the development of a La Niña in the tropical Pacific Ocean. Decadal variability in the Pacific Ocean aided drought in the southern part of the region by driving the cool season to be drier during the last two decades. There is also evidence that the southern part of the region in spring is drying due to human-driven climate change. In sum the drought onset was driven by a combination of internal atmospheric variability and interannual climate variability and aided by natural decadal variability and human-driven climate change. 
    more » « less
  7. Abstract Recent record-breaking wildfire seasons in California prompt an investigation into the climate patterns that typically precede anomalous summer burned forest area. Using burned-area data from the U.S. Forest Service’s Monitoring Trends in Burn Severity (MTBS) product and climate data from the fifth major global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5) over 1984–2018, relationships between the interannual variability of antecedent climate anomalies and July California burned area are spatially and temporally characterized. Lag correlations show that antecedent high vapor pressure deficit (VPD), high temperatures, frequent extreme high temperature days, low precipitation, high subsidence, high geopotential height, low soil moisture, and low snowpack and snowmelt anomalies all correlate significantly with July California burned area as far back as the January before the fire season. Seasonal regression maps indicate that a global midlatitude atmospheric wave train in late winter is associated with anomalous July California burned area. July 2018, a year with especially high burned area, was to some extent consistent with the general patterns revealed by the regressions: low winter precipitation and high spring VPD preceded the extreme burned area. However, geopotential height anomaly patterns were distinct from those in the regressions. Extreme July heat likely contributed to the extent of the fires ignited that month, even though extreme July temperatures do not historically significantly correlate with July burned area. While the 2018 antecedent climate conditions were typical of a high-burned-area year, they were not extreme, demonstrating the likely limits of statistical prediction of extreme fire seasons and the need for individual case studies of extreme years. Significance Statement The purpose of this study is to identify the local and global climate patterns in the preceding seasons that influence how the burned summer forest area in California varies year-to-year. We find that a dry atmosphere, high temperatures, dry soils, less snowpack, low precipitation, subsiding air, and high pressure centered west of California all correlate significantly with large summer burned area as far back as the preceding January. These climate anomalies occur as part of a hemispheric scale pattern with weak connections to the tropical Pacific Ocean. We also describe the climate anomalies preceding the extreme and record-breaking burned-area year of 2018, and how these compared with the more general patterns found. These results give important insight into how well and how early it might be possible to predict the severity of an upcoming summer wildfire season in California. 
    more » « less