skip to main content


Title: Active restoration leads to rapid recovery of aboveground biomass but limited recovery of fish diversity in planted mangrove forests of the North Brazil Shelf

Coastal degradation has spurred active restoration of mangrove ecosystems, from local initiatives to global commitments to increase mangrove forest area by 20% over the next decade. Mangrove restoration projects typically have multiple objectives, including carbon storage, coastal resilience, and fisheries recovery. How planting seedlings, the most common form of active restoration, can promote recovery of mangrove ecosystem functions remains an urgent research need. We quantified multiple ecosystem outcomes of Guyana's national mangrove restoration program, approximately a decade after seedling planting, and compared restoration outcomes with conditions in intact and degraded mangrove forests. Multivariate analyses indicate that intact and restored sites' environmental conditions were similar to each other but different from degraded sites. Aboveground biomass in restored sites (103 Mg ha−1) was 13 and 99% greater than intact (89.4 Mg ha−1) and degraded (0.12 Mg ha−1) sites, respectively. Active restoration successfully increased seedling abundance of both planted and unplanted species, with similar abundance between intact and restored sites. In contrast, fish communities in restored sites remained similar to degraded sites. Restored sites were dominated by a single algivorous fish species, with lower species diversity and commercially valuable fisheries than intact sites. Our results demonstrate that active restoration is a viable option to restore mangrove forest tree biomass and tree species composition in this region. However, even under a best‐case scenario for mangrove forest restoration, fisheries did not recover during our study's timespan. Long‐term monitoring and controlled experiments will be essential to further understand restoration outcomes for multiple ecosystem services in mangrove forests.

 
more » « less
NSF-PAR ID:
10384068
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
29
Issue:
5
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Questions

    Vascular epiphytes constitute a large proportion of tropical forest plant biodiversity, but are among the slowest plants to recolonize secondary forests. We asked whether tree planting for ecological restoration accelerates epiphyte community recovery. Does the spatial configuration of tree planting matter? What landscape contexts are most suitable for epiphyte restoration?

    Location

    Restored pastures in premontane Coto Brus County, Puntarenas, Costa Rica.

    Methods

    We surveyed vascular epiphyte species growing on the lower trunks of 1083 trees in 13 experimental restoration sites. Each site contained three 0.25‐ha treatment plots: natural regeneration, trees planted in patches or ‘islands’ and tree plantations. Sites spanned elevational (1100–1430 m) and deforestation (4–94% forest cover within a 100‐m radius around each site) gradients.

    Results

    Vascular epiphytes were twice as diverse in planted restoration plots (islands and plantations) as in natural regeneration; we observed this at the scale of individual host trees and within 0.25‐ha treatment plots. Contributing factors included that trees in planted restoration plots were larger, older, more abundant and composed of different species than trees in naturally regenerating plots. Epiphyte species richness increased with surrounding forest cover within 100–150 m of restoration plots. Epiphyte communities were also twice as diverse at higher (1330–1430 m) vs lower (1100–1290 m) elevation sites. Epiphyte groups responded differently to restoration treatments and landscape factors; ferns were responsible for higher species richness in planted restoration plots, whereas angiosperms drove elevation and forest cover effects.

    Conclusions

    Tree planting for ecological restoration enriched epiphyte communities compared to natural regeneration, likely because planted forests contained more, bigger and older trees. Tree island plantings were equally effective compared to larger and more expensive plantations. Restoration sites nearer to existing forests had richer epiphyte recolonization, likely because nearby forests provisioned restoration sites with angiosperm seeds. Collectively, results suggest that restoration practitioners can enrich epiphyte community development by planting trees in areas with higher surrounding forest cover, particularly at higher elevations.

     
    more » « less
  2. Choosing appropriate forest restoration interventions is challenging. Natural regeneration can rapidly facilitate forest recovery in many situations. However, barriers such as dispersal limitation and competition with non-native species can require assisted restoration approaches to facilitate plant community recovery. We used a study that has directly compared the outcomes of tropical wet forest restoration interventions across 11 replicate sites in southern Costa Rica. Within this framework, we examined the functional recovery trajectories of recruiting tree sapling communities across a gradient of restoration interventions including low (natural regeneration), intermediate (applied nucleation), and high (plantation) initial resource-investment, which we compared to remnant reference forest. We collated leaf and stem functional traits for tree species that comprised the bulk of recruiting saplings, then determined how community-weighted trait means and functional diversity metrics changed over a decade across treatments. Results show that assisted restoration approaches (applied nucleation, plantation) sped the development of more functionally diverse tree communities, more than tripling the functional richness (FRic) of recruiting communities when compared to natural regeneration. However, functional dispersion (i.e., the trait range of dominant species) was equivalent across interventions, and between 28 and 44% lower than remnant forest, indicating that increases in FRic under assisted restoration were driven by species recruiting in low abundances (<10 individuals across treatments). Recruits in assisted restoration treatments also had 10–15% tougher, less-palatable leaves, and leaves were even tougher in reference forest, which could be driven by increasing herbivory pressure along the gradient of interventions. Results show that tracking simple metrics such as species richness can mask a more mechanistic understanding of ecosystem recovery that is elucidated by taking a functional trait-driven approach toward evaluating outcomes. For example, our work identified a paucity of dense-wooded species recruiting across restoration interventions, wood density was 11–13% lower in restoration treatments than reference forests, underscoring such species as prime targets for enrichment planting. Overall, findings suggest that assisted restoration can catalyze the functional recovery of naturally recruiting tree communities in landscapes that are slow to recover naturally and highlight the importance of evaluating how different components of functional diversity shift over time to fully understand restoration outcomes. 
    more » « less
  3. Coastal and estuarine habitats that provide crucial nursery areas for many economically and ecologically important fish species are in decline. Restoration of benthic habitats can improve fish populations, biomass, and feeding opportunities, but there is limited research on how restoration impacts growth and survival with ontogeny. To address this knowledge gap, here we examine the biometrics (size, biomass, and body condition), recruitment, size structure, and trophic shifts of a sportfish (mangrove snapper,Lutjanus griseus) at restored oyster reefs and stabilized living shorelines to better understand how fish use restored habitats as they grow. Biomass and body condition ofL. griseusjuveniles and subadults, and post‐settlement recruitment, at restored/stabilized sites was similar, and in some cases greater than natural sites, correlating with benthic habitat, reef location, and lunar phase at oyster reefs. Living shorelines exhibited greater recruitment potential, while oyster reefs supported more juveniles and subadults, as evidenced by differences in fish size and biomass between habitats. Dietary overlap implies subadultL. griseuslikely foraged across habitats more than juveniles, while there was greater diet similarity within habitats. Furthermore, ontogenetic shifts also occurred within oyster reef habitats, highlighting the importance of quality habitat to support various sportfish life stages, which can be achieved through restoration. These findings suggest life history attributes can be indicators of habitat restoration success, and specifically provide actionable science to guide the development of more effective strategies for restoring inshore nursery habitats and thus augment production of offshore reef fisheries.

     
    more » « less
  4. Abstract

    As 21st‐century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short‐interval (<30‐year) and long‐interval (>125‐year) post‐fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short‐interval fire, climate, topography, and distance to unburned live forest edge interact to affect post‐fire forest regeneration? (2) How do forest biomass and fuels vary following short‐interval versus long‐interval severe fires? Mean post‐fire live tree stem density was an order of magnitude lower following short‐interval versus long‐interval fires (3240 vs. 28,741 stems ha−1, respectively). Differences between paired plots were amplified at longer distances to live forest edge. Surprisingly, warmer–drier climate was associated with higher seedling densities even after short‐interval fire, likely relating to regional variation in serotiny of lodgepole pine (Pinus contortavar.latifolia). Unlike conifers, density of aspen (Populus tremuloides), a deciduous resprouter, increased with short‐interval versus long‐interval fires (mean 384 vs. 62 stems ha−1, respectively). Live biomass and canopy fuels remained low nearly 30 years after short‐interval fire, in contrast with rapid recovery after long‐interval fire, suggesting that future burn severity may be reduced for several decades following reburns. Short‐interval plots also had half as much dead woody biomass compared with long‐interval plots (60 vs. 121 Mg ha−1), primarily due to the absence of large snags. Our results suggest differences in tree regeneration following short‐interval versus long‐interval fires will be especially pronounced where serotiny was high historically. Propagule limitation will also interact with short‐interval fires to diminish tree regeneration but lessen subsequent burn severity. Amplifying driver interactions are likely to threaten forest resilience under expected trajectories of a future fire.

     
    more » « less
  5. Insect herbivory is one of the major drivers of seedling mortality in the tropics and influences plant abundances and community composition. Anthropogenic disturbance can alter patterns of insect herbivory with potential consequences on plant communities in restored forests. We planted seedlings of early‐ and later‐stage successional tree species in 13–15‐year‐old restored and remnant tropical forests. We then either excluded insect herbivores or left seedlings exposed to examine how insect herbivory‐affected seedling mortality. Early‐successional seedlings experienced similar decreases in mortality when insect herbivores were excluded from both restored and remnant forest sites, but this effect was smaller and driven by only a few species in restored forests. Later‐successional seedlings experienced a stronger decrease in mortality between open and insect‐excluded treatments in remnant than restored sites. Our results suggest that herbivory‐driven seedling mortality is lower in restored forests, particularly for later‐successional seedlings. Results are encouraging from a restoration perspective because recruitment of later‐successional seedlings is a key component of ecosystem recovery. However, if reductions in seedling mortality continue over the long term, this may affect tree community composition as succession progresses.

     
    more » « less