skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Population dynamics of Arctica islandica at Georges Bank (USA): an analysis of sex-based demographics
The ocean quahog, Arctica islandica, is a commercially important bivalve in the eastern USA but very little is known about the recruitment frequency and rebuilding capacity of this species. As the longest-living bivalve on Earth, A. islandica can achieve lifespans in excess of 200 y; however, age determinations are difficult to estimate and age variability at size is extreme. Objectives for this study included the creation of an extremely large age-composition dataset to constrain age at length variability, development of reliable age-length keys (ALK), and descriptions of sex-based population dynamics for the quasi-virgin A. islandica population at Georges Bank (GB) within the greater US Mid-Atlantic stock. Sexually dimorphic characteristics are clearly present, as females are larger than males within age classes and males tend to dominate the oldest age classes. A male represented the maximum age of 261 years and is older than the maximum age previously documented for this region. Sex-specific ALKs were robust and reliable but not interchangeable. This population had higher estimated natural mortality rates than presumed for other regions in the Mid-Atlantic, and females have the highest mortality rate. However, recruitment expansion was also occurring which would affect the age-frequency data used to derive mortality estimates and result in higher mortality. Age frequencies at GB suggest effective recruitment to the population each year since 1867 CE. Reduced recruitment periods are documented and likely attributed to fluctuating environmental conditions. Sex-based demographics are clearly divergent in regard to growth rate, maximum size, longevity and mortality rates.  more » « less
Award ID(s):
1841112
PAR ID:
10384072
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of the Marine Biological Association of the UK
Issue:
101
ISSN:
1469-7769
Page Range / eLocation ID:
1003-1018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sex‐related differences in vital rates that drive population change reflect the basic life history of a species. However, for visually monomorphic bird species, determining the effect of sex on demographics can be a challenge. In this study, we investigated the effect of sex on apparent survival, recruitment, and breeding propensity in the Adélie penguin (Pygoscelis adeliae), a monochromatic, slightly size dimorphic species with known age, known sex, and known breeding history data collected during 1996–2019 (n = 2127 birds) from three breeding colonies on Ross Island, Antarctica. Using a multistate capture–mark–recapture maximum‐likelihood model, we estimated apparent survival (), recapture (resighting) probability (), and the probability of transitioning among breeding states and moving between colonies (; colony‐specific non‐juvenile pre‐breeders, breeders, and non‐breeders). Survival rate varied by breeding status and colony, but not sex, and pre‐breeders had higher survival rates than breeders and non‐breeders. Females had a higher probability of recruiting into the breeding population each year and may enter the breeding pool at younger ages. In contrast, both sexes had the same probability of breeding from year to year once they had recruited. Although we detected no direct sex effects on survival, the variation in recruitment probability and age‐at‐first reproduction, along with lower survival rates of breeders compared to pre‐breeders, likely leads to shorter lifespans for females. This is supported by our findings of a male‐biased mean adult sex ratio (ASR) of 1.4 males for every female ( proportion of males = 0.57, SD = 0.07) across all colonies and years in this metapopulation. Our study illustrates how important it can be to disentangle sex‐related variation in population vital rates, particularly for species with complex life histories and demographic dynamics. 
    more » « less
  2. ABSTRACT Males of polygynous mammals often do not live as long as females and, in some cases, exhibit evidence of earlier senescence. Patterns of DNA methylation (DNAm) have recently been used to predict chronological age in mammals. Whether DNAm also changes as a consequence of survival and senescence is largely untested in wild animals. In this study, we estimate mortality rates using recaptures of 2700 greater spear‐nosed bats,Phyllostomus hastatus, over 34 years and DNAm profiled for over 300 adult bats. In this species, one male typically controls mating access to a group of unrelated females. Bayesian analysis reveals that mortality risk in males is 1.8 times that of females, and comparison of age‐associated differences in DNAm indicates that DNAm changes 1.4 times faster in males than females. Therefore, even though the age of either sex is predicted by a common set of sites, the methylome of males is more dynamic than that of females. Sites associated with sex differences in the rate of DNAm change are sensitive to androgens and enriched on the X chromosome. Sites that exhibit hypermethylation are enriched in promoters of genes involved in the regulation of metabolic processes. Unexpectedly, subordinate males have higher mortality rates than reproductively dominant males and exhibit faster DNAm change than dominants at dozens of sites. Our results reveal that differences in mortality associated with sex and social status are reflected by changes in DNA methylation, providing novel insights into mechanisms of aging and mortality in this and likely other wild animal populations. 
    more » « less
  3. Introduction Dominance relationships in which females dominate males are rare among mammals. Mechanistic hypotheses explaining the occurrence of female dominance suggest that females dominate males because (1) they are intrinsically more aggressive or less submissive than males, and/or (2) they have access to more social support than males. Methods Here, we examine the determinants of female dominance across ontogenetic development in spotted hyenas ( Crocuta crocuta ) using 30 years of detailed behavioral observations from the Mara Hyena Project to evaluate these two hypotheses. Results Among adult hyenas, we find that females spontaneously aggress at higher rates than males, whereas males spontaneously submit at higher rates than females. Once an aggressive interaction has been initiated, adult females are more likely than immigrant males to elicit submission from members of the opposite sex, and both adult natal and immigrant males are more likely than adult females to offer submission in response to an aggressive act. We also find that adult male aggressors are more likely to receive social support than are adult female aggressors, and that both adult natal and immigrant males are 2–3 times more likely to receive support when attacking a female than when attacking another male. Across all age classes, females are more likely than males to be targets of aggressive acts that occur with support. Further, receiving social support does slightly help immigrant males elicit submission from adult females compared to immigrant males acting alone, and it also helps females elicit submission from other females. However, adult females can dominate immigrant males with or without support far more often than immigrant males can dominate females, even when the immigrants are supported against females. Discussion Overall, we find evidence for both mechanisms hypothesized to mediate female dominance in this species: (1) male and female hyenas clearly differ in their aggressive and submissive tendencies, and (2) realized social support plays an important role in shaping dominance relationships within a clan. Nevertheless, our results suggest that social support alone cannot explain sex-biased dominance in spotted hyenas. Although realized social support can certainly influence fight outcomes among females, adult females can easily dominate immigrant males without any support at all. 
    more » « less
  4. Demographic factors are fundamental in shaping infectious disease dynamics. Aspects of populations that create structure, like age and sex, can affect patterns of transmission, infection intensity and population outcomes. However, studies rarely link these processes from individual to population-scale effects. Moreover, the mechanisms underlying demographic differences in disease are frequently unclear. Here, we explore sex-biased infections for a multi-host fungal disease of bats, white-nose syndrome, and link disease-associated mortality between sexes, the distortion of sex ratios and the potential mechanisms underlying sex differences in infection. We collected data on host traits, infection intensity and survival of five bat species at 42 sites across seven years. We found females were more infected than males for all five species. Females also had lower apparent survival over winter and accounted for a smaller proportion of populations over time. Notably, female-biased infections were evident by early hibernation and likely driven by sex-based differences in autumn mating behaviour. Male bats were more active during autumn which likely reduced replication of the cool-growing fungus. Higher disease impacts in female bats may have cascading effects on bat populations beyond the hibernation season by limiting recruitment and increasing the risk of Allee effects. 
    more » « less
  5. In an effort to understand orangutan sociality and the benefits of socializing for a semi-solitary ape, we explore the social lives of the most gregarious orangutan age-sex class - adolescent females. From 1994-2016 adolescent females in Gunung Palung National Park had a social encounter on 50% of their follow days, spending 31% of their time in the company of others. Adolescent females were responsible for initiating social parties (coming within 50 meters) with other age-sex classes 86% of the time. Once they were in a social party, the percentage of approaches (decreases in distance between individuals) performed by adolescent females was significantly predicted by the age-sex class of their social partner (F=4.086, p=0.02). Adolescent females performed most of the approaches when they associated with adult females (70%), while approaches were more equal when they associated with flanged males (46% performed by adolescent females) or unflanged males (56% performed by adolescent females). These findings, in combination with higher rates of agonistic interactions between adolescent and adult females and higher rates of affiliative behaviors between adolescent females and unflanged males, indicate that adolescent females actively seek social opportunities with all age-sex classes, but the benefits and risks associated with socializing vary based on the age-sex of their social partners. We argue that sociality is important during adolescence for female orangutans because they must establish themselves in the social landscape, and must seek social learning opportunities. Finally, we consider the adaptive significance of meaningful social bonds for a semi-solitary, sexually coercive ape. 
    more » « less