skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding responses of summer continental daily temperature variance to perturbations in the land surface evaporative resistance
Abstract Understanding the roles of land surface conditions and atmospheric circulation on continental daily temperature variance is key to improving predictions of temperature extremes. Evaporative resistance ( r s , hereafter), a function of the land cover type, reflects the ease with which water can be evaporated or transpired and is a strong control on land-atmosphere interactions. This study explores the effects of r s perturbations on summer daily temperature variance using the Simple Land Interface Model (SLIM) by mimicking, for r s only, a global land cover conversion from forest to crop/grassland. Decreasing r s causes a global cooling. The cooling is larger in wetter areas and weaker in drier areas, and primarily results from perturbations in shortwave radiation (SW) and latent heat flux (LH). Decreasing r s enhances cloud cover due to greater land surface evaporation and thus reduces incoming SW over most land areas. When r s decreases, wetter areas experience strong evaporative cooling, while drier areas become more moisture-limited and thus experience less cooling. Thermal advection further shapes the temperature response by damping the combined impacts of SWand LH. Temperature variance increases in drier areas and decreases in wetter areas as r s decreases. The temperature variance changes can be largely explained from changes in the combined variance of SW and LH, including an important contribution of changes in the covariance of SW and LH. In contrast, the effects of changes in thermal advection variance mainly affect the Northern Hemisphere mid-latitudes.  more » « less
Award ID(s):
1939988
PAR ID:
10384073
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
ISSN:
0894-8755
Page Range / eLocation ID:
1 to 63
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Following potential reforestation in the Amazon Basin, changes in the biophysical characteristics of the land surface may affect the fluxes of heat and moisture behavior. This research examines the impacts of potential tropical reforestation on surface energy and moisture budgets, including precipitation and temperature. The study is novel in that while most studies look at the opposite driver (deforestation), this one examines the impact of potential forest rehabilitation on atmospheric behavior using WRF.V3.9 (weather research and forecast model). We found that forest rehabilitation across the Amazon Basin can make the atmosphere cooler with more moisture and latent heat (LH), especially during May-November. For instance, the mean seasonal temperature decreased significantly by about 1.2 °C, indicating the cooling effects of reforestation. Also, the seasonal precipitation increased by 5 mm/day in reforested areas. By reforestation, the mean monthly LH also increased as much as 50 W m−2 in August in certain areas, while available moisture to the atmosphere increased by 27%, indicating possible causal mechanisms between increased LH and precipitation and emphasizing the mechanisms that were identified between the onset of the wet season and forest cover. Therefore, it is likely that forest regrowth across the basin leads to, if not reverses regional climate change, at least slowing down the rate of changes in the climate. 
    more » « less
  2. null (Ed.)
    Abstract Arctic amplification (AA) reduces meridional temperature gradients ( dT / dy ) over the northern mid-high latitudes, which may weaken westerly winds. It is suggested that this may lead to wavier and more extreme weather in the midlatitudes. However, temperature variability is shown to decrease over the northern mid-high latitudes under increasing greenhouse gases due to reduced dT / dy . Here, through analyses of coupled model simulations and ERA5 reanalysis, it is shown that consistent with previous studies, cold-season surface and lower-mid troposphere temperature ( T ) variability decreases over northern mid-high latitudes even in simulations with suppressed AA and sea ice loss under increasing CO 2 ; however, AA and sea ice loss further reduce the T variability greatly, leading to a narrower probability distribution and weaker cold or warm extreme events relative to future mean climate. Increased CO 2 strengthens meridional wind ( υ ) with a wavenumber-4 pattern but weakens meridional thermal advection [− υ ( dT / dy )] over most northern mid-high latitudes, and AA weakens the climatological υ and − υ ( dT / dy ). The weakened thermal advection and its decreased variance are the primary causes of the T variability decrease, which is enlarged by a positive feedback between the variability of T and − υ ( dT / dy ). AA not only reduces dT / dy , but also its variance, which further decreases T variability through − υ ( dT / dy ). While the mean snow and ice cover decreases, its variability increases over many northern latitudes, and these changes do not weaken the T variability. Thus, AA’s influence on midlatitude temperature variability comes mainly from its impact on thermal advection, rather than on winds as previously thought. 
    more » « less
  3. Abstract How summertime temperature variability will change with warming has important implications for climate adaptation and mitigation. CMIP5 simulations indicate a compound risk of extreme hot temperatures in western Europe from both warming and increasing temperature variance. CMIP6 simulations, however, indicate only a moderate increase in temperature variance that does not covary with warming. To explore this intergenerational discrepancy in CMIP results, we decompose changes in monthly temperature variance into those arising from changes in sensitivity to forcing and changes in forcing variance. Across models, sensitivity increases with local warming in both CMIP5 and CMIP6 at an average rate of 5.7 ([3.7, 7.9]; 95% c.i.) × 10−3°C per W m−2per °C warming. We use a simple model of moist surface energetics to explain increased sensitivity as a consequence of greater atmospheric demand (∼70%) and drier soil (∼40%) that is partially offset by the Planck feedback (∼−10%). Conversely, forcing variance is stable in CMIP5 but decreases with warming in CMIP6 at an average rate of −21 ([−28, −15]; 95% c.i.) W2 m−4per °C warming. We examine scaling relationships with mean cloud fraction and find that mean forcing variance decreases with decreasing cloud fraction at twice the rate in CMIP6 than CMIP5. The stability of CMIP6 temperature variance is, thus, a consequence of offsetting changes in sensitivity and forcing variance. Further work to determine which models and generations of CMIP simulations better represent changes in cloud radiative forcing is important for assessing risks associated with increased temperature variance. 
    more » « less
  4. null (Ed.)
    As one of the most sensitive areas to climate change, drylands cover ~40% of the Earth’s terrestrial land surface and host more than 38% of the global population. Meanwhile, their response to climate change and variability carries large uncertainties as induced by background climate, topography, and land cover composition; but there is a lack of intercomparison of different dryland ecosystems. In this study, we compare the changing climate and corresponding responses of major natural vegetation cover types in Xinjiang and Arizona, two typical drylands with similar landscapes in Asia and North America. Long-term (2002–2019) quasi-8-day datasets of daily precipitation, daily mean temperature, and Normalized Difference Vegetation Index (NDVI) were constructed based on station observations and remote sensing products. We found that much of Xinjiang experienced warming and wetting trends (although not co-located) over the past 18 years. In contrast, Arizona was dominated by warming with insignificant wetting or drying trends. Significant greening trends were observed in most parts of both study areas, while the increasing rate of NDVI anomalies was relatively higher in Xinjiang, jointly contributed by its colder and drier conditions. Significant degradation of vegetation growth (especially for shrubland) was observed over 18.8% of Arizona due to warming. Our results suggest that responses of similar natural vegetation types under changing climate can be diversified, as controlled by temperature and moisture in areas with different aridity. 
    more » « less
  5. null (Ed.)
    Abstract Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ. 
    more » « less