How quickly can a given class of concepts be learned from examples? It is common to measure the performance of a supervised machine learning algorithm by plotting its “learning curve”, that is, the decay of the error rate as a function of the number of training examples. However, the classical theoretical framework for understanding learnability, the PAC model of Vapnik-Chervonenkis and Valiant, does not explain the behavior of learning curves: the distribution-free PAC model of learning can only bound the upper envelope of the learning curves over all possible data distributions. This does not match the practice of machine learning, where the data source is typically fixed in any given scenario, while the learner may choose the number of training examples on the basis of factors such as computational resources and desired accuracy.
In this paper, we study an alternative learning model that better captures such practical aspects of machine learning, but still gives rise to a complete theory of the learnable in the spirit of the PAC model. More precisely, we consider the problem of universal learning, which aims to understand the performance of learning algorithms on every data distribution, but without requiring uniformity over the distribution. The main result of this paper is a remarkable trichotomy: there are only three possible rates of universal learning. More precisely, we show that the learning curves of any given concept class decay either at an exponential, linear, or arbitrarily slow rates. Moreover, each of these cases is completely characterized by appropriate combinatorial parameters, and we exhibit optimal learning algorithms that achieve the best possible rate in each case.
For concreteness, we consider in this paper only the realizable case, though analogous results are expected to extend to more general learning scenarios.
more »
« less
Weighting Methods for Rare Event Identification From Imbalanced Datasets
In machine learning, we often face the situation where the event we are interested in has very few data points buried in a massive amount of data. This is typical in network monitoring, where data are streamed from sensing or measuring units continuously but most data are not for events. With imbalanced datasets, the classifiers tend to be biased in favor of the main class. Rare event detection has received much attention in machine learning, and yet it is still a challenging problem. In this paper, we propose a remedy for the standing problem. Weighting and sampling are two fundamental approaches to address the problem. We focus on the weighting method in this paper. We first propose a boosting-style algorithm to compute class weights, which is proved to have excellent theoretical property. Then we propose an adaptive algorithm, which is suitable for real-time applications. The adaptive nature of the two algorithms allows a controlled tradeoff between true positive rate and false positive rate and avoids excessive weight on the rare class, which leads to poor performance on the main class. Experiments on power grid data and some public datasets show that the proposed algorithms outperform the existing weighting and boosting methods, and that their superiority is more noticeable with noisy data.
more »
« less
- Award ID(s):
- 1936873
- NSF-PAR ID:
- 10384124
- Date Published:
- Journal Name:
- Frontiers in Big Data
- Volume:
- 4
- ISSN:
- 2624-909X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Peng, Jie (Ed.)Outcome labeling ambiguity and subjectivity are ubiquitous in real-world datasets. While practitioners commonly combine ambiguous outcome labels for all data points (instances) in an ad hoc way to improve the accuracy of multi-class classification, there lacks a principled approach to guide the label combination for all data points by any optimality criterion. To address this problem, we propose the information-theoretic classification accuracy (ITCA), a criterion that balances the trade-off between prediction accuracy (how well do predicted labels agree with actual labels) and classification resolution (how many labels are predictable), to guide practitioners on how to combine ambiguous outcome labels. To find the optimal label combination indicated by ITCA, we propose two search strategies: greedy search and breadth-first search. Notably, ITCA and the two search strategies are adaptive to all machine-learning classification algorithms. Coupled with a classification algorithm and a search strategy, ITCA has two uses: improving prediction accuracy and identifying ambiguous labels. We first verify that ITCA achieves high accuracy with both search strategies in finding the correct label combinations on synthetic and real data. Then we demonstrate the effectiveness of ITCA in diverse applications, including medical prognosis, cancer survival prediction, user demographics prediction, and cell type classification. We also provide theoretical insights into ITCA by studying the oracle and the linear discriminant analysis classification algorithms. Python package itca (available at https://github.com/JSB-UCLA/ITCA) implements ITCA and the search strategies.more » « less
-
Despite recent promising results on semi-supervised learning (SSL), data imbalance, particularly in the unlabeled dataset, could significantly impact the training performance of a SSL algorithm if there is a mismatch between the expected and actual class distributions. The efforts on how to construct a robust SSL framework that can effectively learn from datasets with unknown distributions remain limited. We first investigate the feasibility of adding weights to the consistency loss and then we verify the necessity of smoothed weighting schemes. Based on this study, we propose a self-adaptive algorithm, named Smoothed Adaptive Weighting (SAW). SAW is designed to enhance the robustness of SSL by estimating the learning difficulty of each class and synthesizing the weights in the consistency loss based on such estimation. We show that SAW can complement recent consistency-based SSL algorithms and improve their reliability on various datasets including three standard datasets and one gigapixel medical imaging application without making any assumptions about the distribution of the unlabeled set.more » « less
-
Many modern machine learning tasks require models with high tail performance, i.e. high performance over the worst-off samples in the dataset. This problem has been widely studied in fields such as algorithmic fairness, class imbalance, and risk-sensitive decision making. A popular approach to maximize the model’s tail performance is to minimize the CVaR (Conditional Value at Risk) loss, which computes the average risk over the tails of the loss. However, for classification tasks where models are evaluated by the 0/1 loss, we show that if the classifiers are deterministic, then the minimizer of the average 0/1 loss also minimizes the CVaR 0/1 loss, suggesting that CVaR loss minimization is not helpful without additional assumptions. We circumvent this negative result by minimizing the CVaR loss over randomized classifiers, for which the minimizers of the average 0/1 loss and the CVaR 0/1 loss are no longer the same, so minimizing the latter can lead to better tail performance. To learn such randomized classifiers, we propose the Boosted CVaR Classification framework which is motivated by a direct relationship between CVaR and a classical boosting algorithm called LPBoost. Based on this framework, we design an algorithm called alpha-AdaLPBoost. We empirically evaluate our proposed algorithm on four benchmark datasets and show that it achieves higher tail performance than deterministic model training methods.more » « less
-
Granger causality and its learning algorithms have been widely used in many disciplines to study cause-effect relationship among time series variables. In this paper, we address computing challenges of state-of-art Granger causality learning algorithms, specially when facing increasing dimensionality of available datasets. We study how to leverage gradient boosting meta machine learning techniques to achieve accurate causality discovery and big data parallel techniques for efficient causality discovery from large temporal datasets. We propose two main algorithms for gradient boosting based causality learning, and parallel gradient boosting based causality learning. Our experiments show our proposed algorithms can achieve efficient learning in distributed environments with good learning accuracy.more » « less