The Atlantic surfclam
- Award ID(s):
- 1841112
- PAR ID:
- 10384198
- Date Published:
- Journal Name:
- ICES journal of marine science
- Volume:
- 79
- Issue:
- 6
- ISSN:
- 1054-3139
- Page Range / eLocation ID:
- 1801–1814
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Spisula solidissima fishery, which spans the U.S. Northeast continental shelf, is among the most exposed to offshore wind energy development impacts because of the overlap of fishing grounds with wind energy lease areas, the hydraulic dredges used by the fishing vessels, and the location of vessel home ports relative to the fishing grounds. The Atlantic surfclam federal assessment survey is conducted using a commercial fishing vessel in locations that overlap with the offshore wind energy development. Once wind energy turbines, cables, and scour protection are installed, survey operations within wind energy lease areas may be curtailed or eliminated due to limits on vessel access, safety requirements, and assessment survey protocols. The impact of excluding the federal assessment survey from wind energy lease areas was investigated using a spatially explicit, agent‐based modeling framework that integrates Atlantic surfclam stock biology, fishery captain and fleet behavior, and federal assessment survey and management decisions. Simulations were designed to compare assessment estimates of spawning stock biomass (SSB) and fishing mortality (F ) for scenarios that excluded the survey from (1) wind energy lease areas or (2) wind energy lease areas and potential wind energy lease areas (“call areas”). For the most restricted scenario, the simulated stock assessment estimated 17% lower SSB relative to an unrestricted survey, placing it below the SSB target. The simulatedF increased by 7% but was still less than the acceptedF threshold. Changes in biological reference points were driven by the inability to access the Atlantic surfclam biomass within the wind energy lease areas. Deviations in reference points reflected the proportion of the population excluded from the survey. Excluding the Atlantic surfclam assessment surveys from the regions designated for offshore wind development can alter long‐term stock assessments by increasing uncertainty in metrics that are used to set fishing quotas. -
Abstract Rising water temperatures along the northeastern U.S. continental shelf have resulted in an offshore range shift of the Atlantic surfclam
Spisula solidissima to waters still occupied by ocean quahogsArctica islandica . Fishers presently are prohibited from landing both Atlantic surfclams and ocean quahogs in the same catch, thus limiting fishing to locations where the target species can be sorted on deck. Wind energy development on and around the fishing grounds will further restrict the fishery. A spatially explicit model of the Atlantic surfclam fishery (Spatially Explicit Fishery Economics Simulator) has the ability to simulate the consequences of fishery displacement due to wind energy development in combination with fishery and stock dynamics related to the species' overlap with ocean quahogs. Five sets of simulations were run to determine the effect of varying degrees of species overlap due to Atlantic surfclam range shifts in conjunction with fishing constraints due to wind farm development. Simulations tracked changes in relative stock status, fishery performance, and the economic consequences for the fishery. Compared to a business‐as‐usual scenario, all scenarios with less‐restrictive fishing penalties due to species overlap exhibited higher raw catch numbers but also greater reductions in revenue and increases in cost after the implementation of wind farms. This analysis serves to demonstrate the response of the Atlantic surfclam fishery to combined pressures from competing ocean uses and climate change and emphasizes the potential for economic disruption of fisheries as climate change interacts with the evolution of ocean management on the continental shelf. -
Competing pressures imposed by climate-related warming and offshore development have created a need for quantitative approaches that anticipate fisheries responses to these challenges. This study used a spatially explicit, ecological-economic agent-based model integrating dynamics associated with Atlantic surfclam stock biology, decision-making behavior of fishing vessel captains, and fishing fleet behavior to simulate stock biomass, and fishing vessel catch, effort and landings. Simulations were implemented using contemporary Atlantic surfclam stock distributions and characteristics of the surfclam fishing fleet. Simulated distribution of fishable surfclam biomass was determined by a spatially varying mortality rate, fishing by the fleet was controlled by captain decisions based on previous knowledge, information sharing, and the ability to search and find fishing grounds. Quantitative and qualitative evaluation of simulation results showed that this modeling approach sufficiently represents Atlantic surfclam fishery dynamics. A fishing simulation showed that the captain's decision-making and stock knowledge, and the distribution of fishing grounds relative to home ports controlled the landed catch. The approach used herein serves as the basis for future studies examining response of the Atlantic surfclam fishery to a nexus of simultaneous, complex natural and anthropogenic pressures, and provides a framework for similar models for other resources facing similar pressures.more » « less
-
Abstract The Atlantic surfclam (
Spisula solidissima solidissima ) is an economically valuable clam species that supports a major US fishery. Until recently, fishery efforts along the southern edge of the surfclam range were low due to clam mortalities there in the 1990s. Recent surfclam fishing efforts off Virginia raised questions of whether the surfclam population has returned in the southern region or if a single cohort is supporting the fishery there. Questions have also arisen about whetherS. s. similis is among the population fished off the coast of VA.Spisula solidissima similis is a warm-water cryptic subspecies of the Atlantic surfclam. Although morphologically indistinguishable,S. s. similis grows to a smaller size and is genetically distinct. Atlantic surfclams (n = 103) were collected from the fishing grounds off the coast of VA. Each surfclam was aged, and shell length and tissue weight recorded for comparison to surfclams of the same age from the center of the population. Analyses of mitochondrial (mtCOI) sequences suggests that the two groups sampled off VA are genetically homogeneous, both groups contain two divergent mitochondrial lineages, and one surfclam sampled shares theS. s. similis mtCOI sequence. There are multiple cohorts of surfclams, suggesting that environmental conditions may have improved for surfclams in the south, or that this population has acclimated to altered conditions. Further research should investigate the potential for subspecies hybridization. -
Abstract Labor abuse on fishing vessels and illegal, unreported and unregulated (IUU) fishing violate human rights, jeopardize food security, and deprive governments of revenues. We applied a multi-method approach, combining new empirical data with satellite information on fishing activities and vessel characteristics to map risks of labor abuse and IUU fishing, understand their relationships, and identify major drivers. Port risks were globally pervasive and often coupled, with 57% of assessed ports associated with labor abuse or IUU fishing. For trips ending in assessed ports, 82% were linked to labor abuse or IUU fishing risks. At-sea risk areas were primarily driven by fishing vessel flags linked to poor control of corruption by the flag state, high ownership by countries other than the flag state, and Chinese-flagged vessels. Transshipment risk areas were related to the gear type of fishing vessels engaged in potential transshipment and carrier vessel flags. Measures at port offer promise for mitigating risks, through the Port State Measures Agreement for IUU fishing, and ensuring sufficient vessel time at port to detect and respond to labor abuse. Our results highlight the need for coordinated action across actors to avoid risk displacement and make progress towards eliminating these socially, environmentally and economically unsustainable practices.more » « less