skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protecting ocean carbon through biodiversity and climate governance
Global policy goals for halting biodiversity loss and climate change depend on each other to be successful. Marine biodiversity and climate change are intertwined through foodwebs that cycle and transport carbon and contribute to carbon sequestration. Yet, biodiversity conservation and fisheries management seldom explicitly include ocean carbon transport and sequestration. In order to effectively manage and govern human activities that affect carbon cycling and sequestration, international biodiversity and climate agreements need to address both biodiversity and climate issues. International agreements that address issues for climate and biodiversity are best poised to facilitate the protection of ocean carbon with existing policies. The degree to which the main international biodiversity and climate agreements make reference to multiple issues has however not been documented. Here, we used a text mining analysis of over 2,700 binding and non-binding policy documents from ten global ocean-related agreements to identify keywords related to biodiversity, climate, and ocean carbon. While climate references were mostly siloed within climate agreements, biodiversity references were included in most agreements. Further, we found that six percent of policy documents (n=166) included ocean carbon keywords. In light of our results, we highlight opportunities to strengthen the protection of ocean carbon in upcoming negotiations of international agreements, and via area-based management, environmental impact assessment and strategic environmental assessment.  more » « less
Award ID(s):
1616821
PAR ID:
10384212
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
9
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors. 
    more » « less
  2. Abstract The ocean has recently taken centre stage in the global geopolitical landscape. Despite rising challenges to the effectiveness of multilateralism, attention to ocean issues appears as an opportunity to co-create pathways to ocean sustainability at multiple levels. The ocean science community, however, is not sufficiently well organised to advance these pathways and provide policy input. The Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services demonstrate how knowledge consensus and integration have been instrumental in charting global pathways and eliciting commitments to address, respectively, climate change and biodiversity loss. An equally impactful global platform with a thematic focus on ocean sustainability is needed. Here we introduce the International Panel for Ocean Sustainability (IPOS) as a coordinating mechanism to integrate knowledge systems to forge a bridge across ocean science-policy divides collectively. The IPOS will enrich the global policy debate in the Ocean Decade and support a shift toward ocean sustainability. 
    more » « less
  3. The deep sea (below 200 m depth) is the largest carbon sink on Earth. It hosts abundant biodiversity that underpins the carbon cycle and provides provisioning, supporting, regulating and cultural ecosystem services. There is growing attention to climate-regulating ocean ecosystem services from the scientific, business and political sectors. In this essay we synthesize the unique biophysical, socioeconomic and governance characteristics of the deep sea to critically assess opportunities for deep-sea blue carbon to mitigate climate change. Deep-sea blue carbon consists of carbon fluxes and storage including carbon transferred from the atmosphere by the inorganic and organic carbon pumps to deep water, carbon sequestered in the skeletons and bodies of deep-sea organisms, carbon buried within sediments or captured in carbonate rock. However, mitigating climate change through deep-sea blue carbon enhancement suffers from lack of scientific knowledge and verification, technological limitations, potential environmental impacts, a lack of cooperation and collaboration, and underdeveloped governance. Together, these issues suggest that deep-sea climate change mitigation is limited. Thus, we suggest that a strong focus on blue carbon is too limited a framework for managing the deep sea to contribute to international goals, including the Sustainable Development Goals (SDGs), the Paris Agreement and the post-2020 Biodiversity Goals. Instead, the deep sea can be viewed as a more holistic nature-based solution, including many ecosystem services and biodiversity in addition to climate. Environmental impact assessments (EIAs), area-based management, pollution reduction, moratoria, carbon accounting and fisheries management are tools in international treaties that could help realize benefits from deep-sea, nature-based solutions. 
    more » « less
  4. Abstract Deep-ocean observing is essential for informing policy making in the arenas of climate, biodiversity, fisheries, energy and minerals extraction, pollution, hazards, and genetic resources. The Deep Ocean Observing Strategy (DOOS), a UN Ocean Decade endorsed programme, is meeting with representatives from relevant international bodies and agreements to strengthen their interface with the deep-ocean science community, ensure that deep observing is responsive to societal needs, identify points of entry for science in policy making, and to develop relevant products for broad use. DOOS collaboration with the Environmental Systems Research Institute (Esri) facilitates this co-design. A DOOS policy liaison team is being formed to link the contacts, voices, and messaging of multiple deep-ocean networks and organizations in reaching international policy makers. The UN Ocean Decade will help to gain the ear of target communities, scale communication channels appropriately, minimize duplicative efforts, maximize limited resources, and organize inclusive and equitable public and private partners in deep-ocean science and policy. 
    more » « less
  5. Abstract Natural ecosystems store large amounts of carbon globally, as organisms absorb carbon from the atmosphere to build large, long-lasting, or slow-decaying structures such as tree bark or root systems. An ecosystem’s carbon sequestration potential is tightly linked to its biological diversity. Yet when considering future projections, many carbon sequestration models fail to account for the role biodiversity plays in carbon storage. Here, we assess the consequences of plant biodiversity loss for carbon storage under multiple climate and land-use change scenarios. We link a macroecological model projecting changes in vascular plant richness under different scenarios with empirical data on relationships between biodiversity and biomass. We find that biodiversity declines from climate and land use change could lead to a global loss of between7.44-103.14PgC (global sustainability scenario) and10.87-145.95PgC (fossil-fueled development scenario). This indicates a self-reinforcing feedback loop, where higher levels of climate change lead to greater biodiversity loss, which in turn leads to greater carbon emissions and ultimately more climate change. Conversely, biodiversity conservation and restoration can help achieve climate change mitigation goals. 
    more » « less