Abstract We use panoramic optical spectroscopy obtained with the Very Large Telescope/MUSE to investigate the nature of five candidate extremely isolated low-mass star-forming regions (Blue Candidates; hereafter, BCs) toward the Virgo cluster of galaxies. Four of the five (BC1, BC3, BC4, and BC5) are found to host several H ii regions and to have radial velocities fully compatible with being part of the Virgo cluster. All the confirmed candidates have mean metallicity significantly in excess of that expected from their stellar mass, indicating that they originated from gas stripped from larger galaxies. In summary, these four candidates share the properties of the prototype system SECCO 1, suggesting the possible emergence of a new class of stellar systems, intimately linked to the complex duty cycle of gas within clusters of galaxies. A thorough discussion of the nature and evolution of these objects is presented in a companion paper, where the results obtained here from the MUSE data are complemented with Hubble Space Telescope (optical) and Very Large Array (H i ) observations.
more »
« less
A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE): VI. Environmental quenching on HII-region scales
The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band H α + [NII] imaging survey of the Virgo cluster carried out with MegaCam at the Canada-French-Hawaii telescope. We use a new set of data extracted from VESTIGE to study the impact of the hostile cluster environment on the star formation process down to the scale of HII regions (∼50 pc). Here, HII regions are identified and their parameters measured using the HII PHOT code on a sample of 114 late-type galaxies spanning a wide range in morphological type (Sa-Sd, Im, BCD), stellar mass (10 6.5 ≤ M star ≤ 10 11 M ⊙ ), and star formation activity (10 −3 ≤ SFR ≤ 10 M ⊙ yr −1 ). Owing to the exquisite average resolution of the VESTIGE data (0.65 arcsec), we detect 11302 HII regions with an H α luminosity L (H α ) ≥ 10 37 erg s −1 . We show that the typical number of HII regions in gas-stripped objects is significantly lower than in healthy late-types of similar stellar mass. We also show that in these gas-stripped galaxies the number of HII regions significantly drops outside the effective radius, suggesting that the quenching process occurs outside-in, in agreement with other multifrequency observations. These new results consistently confirm that the main mechanism responsible for the decrease of the star formation activity observed in cluster galaxies is ram pressure, allowing us to discard other milder processes such as starvation or strangulation, which are unable to reproduce the observed radially truncated profiles.
more »
« less
- Award ID(s):
- 1714764
- PAR ID:
- 10384222
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 634
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- L1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides Hubble Space Telescope (HST)/UVIS F275W imaging for four CANDELS fields. We combine this UV imaging with existing HST/near-IR grism spectroscopy from 3D-HST+AGHAST to directly compare the resolved rest-frame UV and H α emission for a sample of 979 galaxies at 0.7 < z < 1.5, spanning a range in stellar mass of 10 8−11.5 M ⊙ . Using a stacking analysis, we perform a resolved comparison between homogenized maps of rest-UV and H α to compute the average UV-to-H α luminosity ratio (an indicator of burstiness in star formation) as a function of galactocentric radius. We find that galaxies below stellar mass of ∼10 9.5 M ⊙ , at all radii, have a UV-to-H α ratio higher than the equilibrium value expected from constant star formation, indicating a significant contribution from bursty star formation. Even for galaxies with stellar mass ≳10 9.5 M ⊙ , the UV-to-H α ratio is elevated toward their outskirts ( R / R eff > 1.5), suggesting that bursty star formation is likely prevalent in the outskirts of even the most massive galaxies, but is likely overshadowed by their brighter cores. Furthermore, we present the UV-to-H α ratio as a function of galaxy surface brightness, a proxy for stellar mass surface density, and find that regions below ∼10 7.5 M ⊙ kpc −2 are consistent with bursty star formation, regardless of their galaxy stellar mass, potentially suggesting that local star formation is independent of global galaxy properties at the smallest scales. Last, we find galaxies at z > 1.1 to have bursty star formation, regardless of radius or surface brightness.more » « less
-
ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $$10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$$10^{10}\, \mathrm{ M}_{\odot }$$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $$\rm [Z/H]$$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies.more » « less
-
It is now well established that galaxies have different morphologies, gas contents, and star formation rates (SFR) in dense environments like galaxy clusters. The impact of environmental density extends to several virial radii, and galaxies appear to be pre-processed in filaments and groups before falling into the cluster. Our goal is to quantify this pre-processing in terms of gas content and SFR, as a function of density in cosmic filaments. We have observed the two first CO transitions in 163 galaxies with the IRAM-30 m telescope, and added 82 more measurements from the literature, thus forming a sample of 245 galaxies in the filaments around the Virgo cluster. We gathered HI-21cm measurements from the literature and observed 69 galaxies with the Nançay telescope to complete our sample. We compare our filament galaxies with comparable samples from the Virgo cluster and with the isolated galaxies of the AMIGA sample. We find a clear progression from field galaxies to filament and cluster galaxies for decreasing SFR, increasing fraction of galaxies in the quenching phase, an increasing proportion of early-type galaxies, and decreasing gas content. Galaxies in the quenching phase, defined as having a SFR below one-third of that of the main sequence (MS), are only between 0% and 20% in the isolated sample, according to local galaxy density, while they are 20%–60% in the filaments and 30%–80% in the Virgo cluster. Processes that lead to star formation quenching are already at play in filaments; they depend mostly on the local galaxy density, while the distance to the filament spine is a secondary parameter. While the HI-to-stellar-mass ratio decreases with local density by an order of magnitude in the filaments, and two orders of magnitude in the Virgo cluster with respect to the field, the decrease is much less for the H 2 -to-stellar-mass ratio. As the environmental density increases, the gas depletion time decreases, because the gas content decreases faster than the SFR. This suggests that gas depletion precedes star formation quenching.more » « less
-
HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions across the disk would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (astro.phys.wvu.edu/wise), but only 2000 of these are confirmed HII regions. The work is ongoing, but from our survey completeness limits and population synthesis modeling, we predict there are nearly 10,000 HII regions in the Milky Way created by a central star of type B2 or earlier. A population of especially interesting HII regions trace the Outer Scutum-Centaurus spiral arm (OSC), the most distant molecular spiral arm in the Milky Way. These regions represent star formation at low densities and low metallicities, similar to the conditions in galaxies like the Large Magellanic Cloud or a much younger Milky Way. To date, we have detected high-mass star formation at 17 locations in the OSC, with the most distant source at 23.5 kpc from the Sun and 17 kpc from the Galactic Center. They have molecular cloud masses up to 105 Msol and central stellar types as early as O4. By comparing molecular and stellar masses, we can begin to put constraints on the star formation efficiency of these distant outer Galaxy sources. We map the ionized gas using the Very Large Array at X-band in the D-configuration. We map the 13CO, HCN, and HCO+ molecular gas emission using the Argus array on the Green Bank Telescope, producing individual 5 arcmin maps with 8 arcsec resolution and 0.5 K sensitivity in 20 minutes.more » « less
An official website of the United States government

