skip to main content

This content will become publicly available on January 1, 2023

Title: Virgo filaments: I. Processing of gas in cosmological filaments around the Virgo cluster
It is now well established that galaxies have different morphologies, gas contents, and star formation rates (SFR) in dense environments like galaxy clusters. The impact of environmental density extends to several virial radii, and galaxies appear to be pre-processed in filaments and groups before falling into the cluster. Our goal is to quantify this pre-processing in terms of gas content and SFR, as a function of density in cosmic filaments. We have observed the two first CO transitions in 163 galaxies with the IRAM-30 m telescope, and added 82 more measurements from the literature, thus forming a sample of 245 galaxies in the filaments around the Virgo cluster. We gathered HI-21cm measurements from the literature and observed 69 galaxies with the Nançay telescope to complete our sample. We compare our filament galaxies with comparable samples from the Virgo cluster and with the isolated galaxies of the AMIGA sample. We find a clear progression from field galaxies to filament and cluster galaxies for decreasing SFR, increasing fraction of galaxies in the quenching phase, an increasing proportion of early-type galaxies, and decreasing gas content. Galaxies in the quenching phase, defined as having a SFR below one-third of that of the main sequence more » (MS), are only between 0% and 20% in the isolated sample, according to local galaxy density, while they are 20%–60% in the filaments and 30%–80% in the Virgo cluster. Processes that lead to star formation quenching are already at play in filaments; they depend mostly on the local galaxy density, while the distance to the filament spine is a secondary parameter. While the HI-to-stellar-mass ratio decreases with local density by an order of magnitude in the filaments, and two orders of magnitude in the Virgo cluster with respect to the field, the decrease is much less for the H 2 -to-stellar-mass ratio. As the environmental density increases, the gas depletion time decreases, because the gas content decreases faster than the SFR. This suggests that gas depletion precedes star formation quenching. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1716690 1716657
Publication Date:
NSF-PAR ID:
10320959
Journal Name:
Astronomy & Astrophysics
Volume:
657
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. As part of the Undergraduate ALFALFA Team, we are conducting a survey of the gas and star-formation properties of galaxies in 36 groups and clusters in the local universe. The galaxies in our sample span a large range of galactic environments, from the centers of galaxy groups and clusters to the surrounding infall regions. One goal of the project is to map the spatial distribution of star-formation; the relative extent of the star-forming and stellar disks provides important information about the internal and external processes that deplete gas and thus drive galaxy evolution. We obtained wide-field H-alpha observations with the WIYN 0.9m telescope at Kitt Peak National Observatory for galaxies in the vicinity of the MKW11 and NRGb004 galaxy groups and the Abell 1367 cluster. We present a preliminary analysis of the relative size of the star-forming and stellar disks as a function of galaxy morphology and local galaxy density, and we calculate gas depletion times using star-formation rates and HI gas mass. We will combine these results with those from other UAT members to determine if and how environmentally-driven gas depletion varies with the mass and X-ray properties of the host group or cluster. This work has supported bymore »NSF grants AST-0847430, AST-1211005 and AST-1637339.« less
  2. Abstract We report Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy of 10 quasars with foreground star-forming galaxies at 0.02 < z < 0.14 within impact parameters of ∼1–7 kpc. We detect damped/sub-damped Ly α (DLA/sub-DLA) absorption in 100% of cases where no higher-redshift Lyman-limit systems extinguish the flux at the expected wavelength of Ly α absorption, obtaining the largest targeted sample of DLA/sub-DLAs in low-redshift galaxies. We present absorption measurements of neutral hydrogen and metals. Additionally, we present Green Bank Telescope 21 cm emission measurements for five of the galaxies (including two detections). Combining our sample with the literature, we construct a sample of 117 galaxies associated with DLA/sub-DLAs spanning 0 < z < 4.4, and examine trends between gas and stellar properties, and with redshift. The H i column density is anticorrelated with impact parameter and stellar mass. More massive galaxies appear to have gas-rich regions out to larger distances. The specific star formation rate (sSFR) of absorbing galaxies increases with redshift and decreases with M *, consistent with evolution of the star formation main sequence (SFMS). However, ∼20% of absorbing galaxies lie below the SFMS, indicating that some DLA/sub-DLAs trace galaxies with longer-than-typical gas-depletion timescales. Most DLA/sub-DLA galaxiesmore »with 21 cm emission have higher H i masses than typical galaxies with comparable M *. High M HI / M * ratios and high sSFRs in DLA/sub-DLA galaxies with M * < 10 9 M ⊙ suggest these galaxies may be gas-rich because of recent gas accretion rather than inefficient star formation. Our study demonstrates the power of absorption and emission studies of DLA/sub-DLA galaxies for extending galactic evolution studies to previously under-explored regimes of low M * and low SFR.« less
  3. We present results from an ALFALFA HI study to examine whether the cold gas reservoirs of galaxies are inhibited or enhanced in large-scale filaments, and we discuss implications for follow-up work using the new Arecibo Pisces-Perseus Supercluster survey (APPSS). From the ALFALFA survey, we find that the HI deficiency for galaxies in the range 10^8.5-10^10.5 solar masses decreases with distance from the filament spine, suggesting that galaxies are cut off from cold gas, possibly by heating or by dynamical detachment from the smaller-scale cosmic web. This contrasts with previous results for larger galaxies in the HI Parkes All-Sky Survey. We discuss the prospects for elucidating this apparent dependence on galaxy mass with data from the APPSS, which will extend to smaller masses. We also find that the most gas-rich galaxies at fixed local density and stellar mass are those in small, correlated ``tendril” structures within voids: although galaxies in tendrils are in significantly denser environments, on average, than galaxies in voids, they are not redder or more HI deficient. This work has been supported by NSF grants AST-1211005 and AST-1637339.
  4. Abstract Virgo is the nearest galaxy cluster; it is thus ideal for studies of galaxy evolution in dense environments in the local universe. It is embedded in a complex filamentary network of galaxies and groups, which represents the skeleton of the large-scale Laniakea supercluster. Here we assemble a comprehensive catalog of galaxies extending up to ∼12 virial radii in projection from Virgo to revisit the cosmic-web structure around it. This work is the foundation of a series of papers that will investigate the multiwavelength properties of galaxies in the cosmic web around Virgo. We match spectroscopically confirmed sources from several databases and surveys including HyperLeda, NASA Sloan Atlas, NASA/IPAC Extragalactic Database, and ALFALFA. The sample consists of ∼7000 galaxies. By exploiting a tomographic approach, we identify 13 filaments, spanning several megaparsecs in length. Long >17 h –1 Mpc filaments, tend to be thin (<1 h –1 Mpc in radius) and with a low-density contrast (<5), while shorter filaments show a larger scatter in their structural properties. Overall, we find that filaments are a transitioning environment between the field and cluster in terms of local densities, galaxy morphologies, and fraction of barred galaxies. Denser filaments have a higher fraction of early-typemore »galaxies, suggesting that the morphology–density relation is already in place in the filaments, before galaxies fall into the cluster itself. We release the full catalog of galaxies around Virgo and their associated properties.« less
  5. Utilizing spectroscopic observations taken for the VIMOS Ultra-Deep Survey (VUDS), new observations from Keck/DEIMOS, and publicly available observations of large samples of star-forming galaxies, we report here on the relationship between the star-formation rate (SFR) and the local environment ( δ gal ) of galaxies in the early universe (2 <  z  < 5). Unlike what is observed at lower redshifts ( z  ≲ 2), we observe a definite, nearly monotonic increase in the average SFR with increasing galaxy overdensity over more than an order of magnitude in δ gal . The robustness of this trend is quantified by accounting for both uncertainties in our measurements and galaxy populations that are either underrepresented or not present in our sample (e.g., extremely dusty star-forming and quiescent galaxies), and we find that the trend remains significant under all circumstances. This trend appears to be primarily driven by the fractional increase of galaxies in high-density environments that are more massive in their stellar content and are forming stars at a higher rate than their less massive counterparts. We find that, even after stellar mass effects are accounted for, there remains a weak but significant SFR– δ gal trend in our sample implying that additional environmentally relatedmore »processes are helping to drive this trend. We also find clear evidence that the average SFR of galaxies in the densest environments increases with increasing redshift. These results lend themselves to a picture in which massive gas-rich galaxies coalesce into proto-cluster environments at z  ≳ 3, interact with other galaxies or with a forming large-scale medium, subsequently using or losing most of their gas in the process, and begin to seed the nascent red sequence that is present in clusters at slightly lower redshifts.« less