ABSTRACT By altering hydrological and geomorphological processes at watershed scales, humans have substantially influenced the movement of sediment on Earth's surface. Despite widespread recognition of human impacts on erosion and deposition, few studies have assessed the magnitude of change in watershed‐scale sediment fluxes before and after the implementation of industrial agriculture and how agricultural development has altered the spatial distribution of sediment fluxes throughout watersheds. This study uses a modeling approach to explore changes in sediment fluxes before and after agricultural development in the upper Sangamon River Basin—an agricultural watershed in the midwestern United States. Comparison of model predictions with river hydrological and sediment data and with information on soil erosion and floodplain sedimentation shows the model accurately captures contemporary fluxes of water and sediment. To assess human impact, native land‐cover conditions are used to estimate the magnitude and spatial distribution of sediment fluxes before the landscape was transformed by farming practices. Results suggest that sediment delivery from hillslopes to streams in this low relief watershed has increased 11‐fold and the sediment load in streams has increased eight‐fold since European settlement. Floodplain sedimentation has also increased dramatically, a finding consistent with recent estimates of post‐settlement alluvium accumulation rates. The proportion of sediment exported from the basin is now slightly greater than it was in the 1800s. Overall, the model results indicate that humans have greatly enhanced the movement and storage of sediment within the upper Sangamon River basin.
more »
« less
Streambank and floodplain geomorphic change and contribution to watershed material budgets
Abstract Stream geomorphic change is highly spatially variable but critical to landform evolution, human infrastructure, habitat, and watershed pollutant transport. However, measurements and process models of streambank erosion and floodplain deposition and resulting sediment fluxes are currently insufficient to predict these rates in all perennial streams over large regions. Here we measured long-term lateral streambank and vertical floodplain change and sediment fluxes using dendrogeomorphology in streams around the U.S. Mid-Atlantic, and then statistically modeled and extrapolated these rates to all 74 133 perennial, nontidal streams in the region using watershed- and reach-scale predictors. Measured long-term rates of streambank erosion and floodplain deposition were highly spatially variable across the landscape from the mountains to the coast. Random Forest regression identified that geomorphic change and resulting fluxes of sediment and nutrients, for both streambank and floodplain, were most influenced by urban and agricultural land use and the drainage area of the upstream watershed. Modeled rates for headwater streams were net erosional whereas downstream reaches were on average net depositional, leading to regional cumulative sediment loads from streambank erosion (−5.1 Tg yr −1 ) being nearly balanced by floodplain deposition (+5.3 Tg yr −1 ). Geomorphic changes in stream valleys had substantial influence on watershed sediment, phosphorus, carbon, and nitrogen budgets in comparison to existing predictions of upland erosion and delivery to streams and of downstream sediment loading. The unprecedented scale of these novel findings provides important insights into the balance of erosion and deposition in streams within disturbed landscapes and the importance of geomorphic change to stream water quality and carbon sequestration, and provides vital understanding for targeting management actions to restore watersheds.
more »
« less
- Award ID(s):
- 1706612
- PAR ID:
- 10384283
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 17
- Issue:
- 6
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 064015
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Rapid warming in the Arctic threatens to destabilize mercury (Hg) deposits contained within soils in permafrost regions. Yet current estimates of the amount of Hg in permafrost vary by ∼4 times. Moreover, how Hg will be released to the environment as permafrost thaws remains poorly known, despite threats to water quality, human health, and the environment. Here we present new measurements of total mercury (THg) contents in discontinuous permafrost in the Yukon River Basin in Alaska. We collected riverbank and floodplain sediments from exposed banks and bars near the villages of Huslia and Beaver. Median THg contents were 49+13/−21ng THg g sediment−1and 39+16/−18ng THg g sediment−1for Huslia and Beaver, respectively (uncertainties as 15th and 85th percentiles). Corresponding THg:organic carbon ratios were 5.4+2.0/−2.4Gg THg Pg C−1and 4.2+2.4/−2.9Gg THg Pg C−1. To constrain floodplain THg stocks, we combined measured THg contents with floodplain stratigraphy. Trends of THg increasing with smaller sediment size and calculated stocks in the upper 1 m and 3 m are similar to those suggested for this region by prior pan-Arctic studies. We combined THg stocks and river migration rates derived from remote sensing to estimate particulate THg erosional and depositional fluxes as river channels migrate across the floodplain. Results show similar fluxes within uncertainty into the river from erosion at both sites (95+12/−47kg THg yr−1and 26+154/−13kg THg yr−1at Huslia and Beaver, respectively), but different fluxes out of the river via deposition in aggrading bars (60+40/−29kg THg yr−1and 10+5.3/−1.7kg THg yr−1). Thus, a significant amount of THg is liberated from permafrost during bank erosion, while a variable but generally lesser portion is subsequently redeposited by migrating rivers.more » « less
-
Abstract Beaver dam analogs (BDAs) are a stream restoration technique that is rapidly gaining popularity in the western United States. These low‐cost, stream‐spanning structures, designed after natural beaver dams, are being installed to confer the ecologic, hydrologic, and geomorphic benefits of beaver dams in streams that are often too degraded to provide suitable beaver habitat. BDAs are intended to slow streamflow, reduce the erosive power of the stream, and promote aggradation, making them attractive restoration tools in incised channels. Despite increasing adoption of BDAs, few studies to date have monitored the impacts of BDAs on channel form. Here, we examine the geomorphic changes that occurred within the first year of restoration efforts in Wyoming using high‐resolution visible light orthomosaics and elevation data collected with unoccupied aerial vehicles (UAVs). By leveraging the advantages of rapidly acquired images from UAV surveys with recent advancements in structure‐from‐motion photogrammetry, we constructed centimeter‐scale digital elevation models (DEMs) of the restoration reach and an upstream control reach. Through DEM differencing, we identified areas of enhanced erosion and deposition near the BDAs, suggesting BDA installation initiated a unique geomorphic response in the channel. Both reaches were characterized by net erosion during the first year of restoration efforts. While erosion around the BDAs may seem counter to the long‐term goal of BDA‐induced aggradation, short‐term net erosion is consistent with high precipitation during the study and with theoretical channel evolution models of beaver‐related stream restoration that predict initial channel widening and erosion before net deposition. To better understand the impacts of BDAs on channel morphology and restoration efforts in the western United States, it is imperative that we consistently assess the effects of beaver‐inspired restoration projects across a range of hydrologic and geomorphic settings and that we continue this monitoring in the future.more » « less
-
Abstract The interaction of climate change and increasing anthropogenic water withdrawals is anticipated to alter surface water availability and the transport of carbon (C), nitrogen (N), and phosphorus (P) in river networks. But how changes to river flow will alter the balance, or stoichiometry, of these fluxes is unknown. The Lower Flint River Basin (LFRB) is part of an interstate watershed relied upon by several million people for diverse ecosystem services, including seasonal crop irrigation, municipal drinking water access, and public recreation. Recently, increased water demand compounded with intensified droughts have caused historically perennial streams in the LFRB to cease flowing, increasing ecosystem vulnerability. Our objectives were to quantify how riverine dissolved C:N:P varies spatially and seasonally and determine how monthly stoichiometric fluxes varied with overall water availability in a major tributary of LFRB. We used a long‐term record (21–29 years) of solute water chemistry (dissolved organic carbon, nitrate/nitrite, ammonia, and soluble reactive phosphorus) paired with long‐term stream discharge data across six sites within a single LFRB watershed. We found spatial and seasonal differences in soluble nutrient concentrations and stoichiometry attributable to groundwater connections, the presence of a major floodplain wetland, and flow conditions. Further, we showed that water availability, as indicated by the Palmer Drought Severity Index (PDSI), strongly predicted stoichiometry with generally lower C:N and C:P and higher N:P fluxes during periods of low water availability (PDSI < −4). These patterns suggest there may be long‐term and significant changes to stream ecosystem function as water availability is being dramatically altered by human demand with consequential impacts on solute transport, in‐stream processing, and stoichiometric ratios.more » « less
-
Severe wildfire may alter steep mountain streams by increasing peak discharges, elevating sediment and wood inputs into channels, and increasing susceptibility to landslides and debris flows. In the Pacific Northwest, where mean annual precipitation is high and mean fire‐return intervals range from decades to centuries, understanding of steep stream response to fire is limited. We evaluate the hydrologic and geomorphic response of ~100‐m‐long steep stream reaches to the large‐scale and severe 2020 fires in the Western Cascade Range, Oregon. In the two runoff seasons after the fires, peak flows in burned reaches were below the 2‐year recurrence interval flood, a level sufficient to mobilize the median grain size of bed material, but not large enough to mobilize coarser material and reorganize channel morphology. Sediment inputs to study streams consisted of two road‐fill failure landslides, slumps, sheetwash, and minor bank erosion; precipitation thresholds to trigger debris flows were not exceeded in our sites. There was a 50% increase in the number of large wood pieces in burned reaches after the fires. Changes in fluxes of water, sediment, and wood induced shifts in the balance of sediment supply to transport capacity, initiating a sequence of sediment aggradation and bed‐material fining followed by erosion and bed‐material coarsening. Gross channel form showed resilience to change, and an unburned reference reach exhibited little morphologic change. Post‐fire recruitment of large wood will likely have long‐term implications for channel morphology and habitat heterogeneity. Below‐average precipitation during the study period, combined with an absence of extreme precipitation events, was an important control on channel responses. Climate change may have a complex effect on stream response to wildfire by increasing the propensity for both drought and extreme rain events and by altering vegetation recovery patterns.more » « less
An official website of the United States government

