Abstract The plastic responses of plants to abiotic and biotic environmental factors have generally been addressed separately; thus we have a poor understanding of how these factors interact. For example, little is known about the effects of plant–plant interactions on the plasticity of plants in response to water availability. Furthermore, few studies have compared the effects of intra‐ and interspecific interactions on plastic responses to abiotic factors. To explore the effects of intraspecific and interspecific plant–plant interactions on plant responses to water availability, we grewLeucanthemumvulgareandPotentillarectawith a conspecific or the other species, and grew pairs of each species as controls in pots with the roots, but not shoots, physically separated. We subjected these competitive arrangements to mesic and dry conditions, and then measured shoot mass, root mass, total mass and root : shoot ratio and calculated plasticity in these traits. The total biomass of both species was highly suppressed by both intra‐ and interspecific interactions in mesic soil conditions. However, in drier soil, intraspecific interactions for both species and the effect ofP. rectaonL. vulgarewere facilitative. For plasticity in response to water supply, when adjusted for total biomass, drought increased shoot mass, and decreased root mass and root : shoot ratios for both species in intraspecific interactions. When grown alone, there were no plastic responses in any trait except total mass, for either species. Our results suggested that plants interacting with other plants often show improved tolerance for drought than those grown alone, perhaps because of neighbor‐induced shifts in plasticity in biomass allocation. Facilitative effects might also be promoted by plasticity to drought in root : shoot ratios.
more »
« less
Trait Response to Nitrogen and Salinity in Rhizophora mangle Propagules and Variation by Maternal Family and Population of Origin
Many coastal foundation plant species thrive across a range of environmental conditions, often displaying dramatic phenotypic variation in response to environmental variation. We characterized the response of propagules from six populations of the foundation species Rhizophora mangle L. to full factorial combinations of two levels of salinity (15 ppt and 45 ppt) reflecting the range of salinity measured in the field populations, and two levels of nitrogen (N; no addition and amended at approximately 3 mg N per pot each week) equivalent to comparing ambient N to a rate of addition of 75 kg per hectare per year. The response to increasing salinity included significant changes, i.e., phenotypic plasticity, in succulence and root to shoot biomass allocation. Propagules also showed plasticity in maximum photosynthetic rate and root to shoot allocation in response to N amendment, but the responses depended on the level of salinity and varied by population of origin. In addition, propagules from different populations and maternal families within populations differed in survival and all traits measured except photosynthesis. Variation in phenotypes, phenotypic plasticity and propagule survival within and among R. mangle populations may contribute to adaptation to a complex mosaic of environmental conditions and response to climate change.
more »
« less
- Award ID(s):
- 1930451
- PAR ID:
- 10384320
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The role of phenotypic plasticity in adaptive evolution has been debated for decades. This is because the strength of natural selection is dependent on the direction and magnitude of phenotypic responses to environmental signals. Therefore, the connection between plasticity and adaptation will depend on the patterns of plasticity harbored by ancestral populations before a change in the environment. Yet few studies have directly assessed ancestral variation in plasticity and tracked phenotypic changes over time. Here we resurrected historic propagules ofDaphniaspanning multiple species and lakes in Wisconsin following the invasion and proliferation of a novel predator (spiny waterflea,Bythotrephes longimanus). This approach revealed extensive genetic variation in predator-induced plasticity in ancestral populations ofDaphnia. It is unlikely that the standing patterns of plasticity shieldedDaphniafrom selection to permit long-term coexistence with a novel predator. Instead, this variation in plasticity provided the raw materials forBythotrephes-mediated selection to drive rapid shifts inDaphniabehavior and life history. Surprisingly, there was little evidence for the evolution of trait plasticity as genetic variation in plasticity was maintained in the face of a novel predator. Such results provide insight into the link between plasticity and adaptation and highlight the importance of quantifying genetic variation in plasticity when evaluating the drivers of evolutionary change in the wild.more » « less
-
PremiseThe success or failure of propagules in contrasting microhabitats may play a role in biological invasion. We tested for variation in demographic performance and phenotypic trait expression during invasion byAlliaria petiolatain different microhabitats. MethodsWe performed a reciprocal transplant experiment withAlliaria petiolatafrom edge, intermediate, and forest understory microhabitats to determine the roles of the environment and maternal source on traits, fecundity, population growth rates (λ), and selection. ResultsObservations ofin situpopulations show that edge populations had the highest density and reproductive output, and forest populations had the lowest. In experimental populations, population growth rates and reproductive output were highest in the edge, and the intermediate habitat had the lowest germination and juvenile survival. Traits exhibited phenotypic plasticity in response to microhabitat, but that plasticity was not adaptive. There were few effects of maternal source location on fitness components or traits. ConclusionsAlliaria petiolataappears to be viable, or nearly so, in all three microhabitat types, with edge populations likely providing seed to the other microhabitats. The intermediate microhabitat may filter propagules at the seed stage, but discrepancies betweenin situobservations and experimental transplants preclude clear conclusions about the role of each microhabitat in niche expansion. However, edge microhabitats show the highest seed output in both analyses, suggesting that managing edge habitats might reduce spread to the forest understory.more » « less
-
Abstract The microbiome has been hypothesized as a driving force of phenotypic variation in host organisms that is capable of extending metabolic processes, altering development and in some cases, conferring novel functions that are critical for survival. Only a few studies have directly shown a causal role for the environmental microbiome in altering host phenotypic features. To assess the extent to which environmental microbes induce variation in host life‐history traits and behaviour, we inoculated axenicDrosophila melanogasterwith microbes isolated from drosophilid populations collected from two different field sites and generated two populations with distinct bacterial and fungal profiles. We show that microbes isolated from environmental sites with modest abiotic differences induce large variation in host reproduction, fatty acid levels, stress tolerance and sleep behaviour. Importantly, clearing microbes from each experimental population removed the phenotypic differences. The results support the causal role of environmental microbes as drivers of host phenotypic plasticity and potentially, rapid adaptation and evolution.more » « less
-
Plants respond to rapid environmental change in ways that depend on both their genetic identity and their phenotypic plasticity, impacting their survival as well as associated ecosystems. However, genetic and environmental effects on phenotype are difficult to quantify across large spatial scales and through time. Leaf hyperspectral reflectance offers a potentially robust approach to map these effects from local to landscape levels. Using a handheld field spectrometer, we analyzed leaf‐level hyperspectral reflectance of the foundation tree species Populus fremontii in wild populations and in three 6‐year‐old experimental common gardens spanning a steep climatic gradient. First, we show that genetic variation among populations and among clonal genotypes is detectable with leaf spectra, using both multivariate and univariate approaches. Spectra predicted population identity with 100% accuracy among trees in the wild, 87%–98% accuracy within a common garden, and 86% accuracy across different environments. Multiple spectral indices of plant health had significant heritability, with genotype accounting for 10%–23% of spectral variation within populations and 14%–48% of the variation across all populations. Second, we found gene by environment interactions leading to population‐specific shifts in the spectral phenotype across common garden environments. Spectral indices indicate that genetically divergent populations made unique adjustments to their chlorophyll and water content in response to the same environmental stresses, so that detecting genetic identity is critical to predicting tree response to change. Third, spectral indicators of greenness and photosynthetic efficiency decreased when populations were transferred to growing environments with higher mean annual maximum temperatures relative to home conditions. This result suggests altered physiological strategies further from the conditions to which plants are locally adapted. Transfers to cooler environments had fewer negative effects, demonstrating that plant spectra show directionality in plant performance adjustments. Thus, leaf reflectance data can detect both local adaptation and plastic shifts in plant physiology, informing strategic restoration and conservation decisions by enabling high resolution tracking of genetic and phenotypic changes in response to climate change.more » « less
An official website of the United States government

