The mechanisms causing invasive species impact are rarely empirically tested, limiting our ability to understand and predict subsequent changes in invaded plant communities. Invader disruption of native mutualistic interactions is a mechanism expected to have negative effects on native plant species. Specifically, disruption of native plant‐fungal mutualisms may provide non‐mycorrhizal plant invaders an advantage over mycorrhizal native plants. Invasive
The success or failure of propagules in contrasting microhabitats may play a role in biological invasion. We tested for variation in demographic performance and phenotypic trait expression during invasion by
We performed a reciprocal transplant experiment with
Observations of
- Award ID(s):
- 1832210
- NSF-PAR ID:
- 10461368
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- American Journal of Botany
- Volume:
- 106
- Issue:
- 6
- ISSN:
- 0002-9122
- Page Range / eLocation ID:
- p. 821-832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Alliaria petiolata (garlic mustard) produces secondary chemicals toxic to soil microorganisms including mycorrhizal fungi, and is known to induce physiological stress and reduce population growth rates of native forest understory plant species. Here, we report on a 11‐yr manipulative field experiment in replicated forest plots testing if the effects of removal of garlic mustard on the plant community support the mutualism disruption hypothesis within the entire understory herbaceous community. We compare community responses for two functional groups: the mycorrhizal vs. the non‐mycorrhizal plant communities. Our results show that garlic mustard weeding alters the community composition, decreases community evenness, and increases the abundance of understory herbs that associate with mycorrhizal fungi. Conversely, garlic mustard has no significant effects on the non‐mycorrhizal plant community. Consistent with the mutualism disruption hypothesis, our results demonstrate that allelochemical producing invaders modify the plant community by disproportionately impacting mycorrhizal plant species. We also demonstrate the importance of incorporating causal mechanisms of biological invasion to elucidate patterns and predict community‐level responses. -
Premise Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of S
olanum carolinense offspring.Methods Manduca sexta caterpillars were used to inflict weekly damage on inbred and outbredS. carolinense maternal plants. Cross‐pollinations were performed by hand to produce seed from herbivore‐damaged outbred plants, herbivore‐damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions.Results We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore‐damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions.
Conclusions This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.
-
Abstract Climate‐driven ecosystem shifts occur through turnover in the foundation species which structure the landscape. Therefore, to predict the fate of areas undergoing climate‐driven ecosystem shifts, one approach is to characterize ecological and evolutionary responses of foundation species along dynamic environmental gradients. One such gradient is the ecotone between tidal marshes and maritime forests in coastal areas of the US Mid‐Atlantic region where accelerated sea‐level rise and coastal storms of increased frequency and intensity are driving forest dieback and inland marsh migration. Mid‐Atlantic tidal marshes are structured by marsh grasses which act as foundation species, and these grasses exhibit trait variation across their distribution from established marsh interior to their inland migration front. We conducted a reciprocal transplant experiment with
Spartina patens , a dominant high marsh grass and foundation species, between established populations in the high marsh and range edge populations in the forest understory at three Mid‐Atlantic sites. We monitored environmental conditions in marsh and forest understory habitats, measured plant traits (above‐ and belowground biomass, specific leaf area, leaf N and C concentrations) in transplanted and reference non‐transplanted individuals, and used microsatellite markers to determine the genetic identity of transplants to quantify clonality between habitats and sites. Individuals transplanted into the forest understory exhibited a plastic shift in resource allocation to aboveground structures associated with light acquisition, with shifts in transplants making them more morphologically similar to reference individuals sampled from the forest habitat. Clonal diversity and genetic distance among transplants were relatively high at two of three sites, but individuals at all sites exhibited trans‐habitat plasticity regardless of clonal diversity or a lack thereof. Individuals grown in the forest understory showed lower vegetative and reproductive fitness. Nevertheless, the trait plasticity exhibited by this species allowed individuals from the forest that were transplanted into the marsh to recoup significant biomass in only a single growing season. We predict high plasticity will facilitate the persistence of colonizingS. patens individuals under suboptimal forest shade conditions until forest dieback increases light availability, ultimately promoting continued inland migration of this foundation species under sea‐level rise. -
Abstract The direct role of non‐native plant invaders in driving negative population‐ and community‐level processes of native species has been recently questioned. Addressing this controversy requires determining quantitatively if invaders negatively affect native population fitness. Because the invasion of non‐natives often coincides with other anthropogenic stressors, experiments that partition the putative impact of non‐natives from other known stressors and assess their potential synergies are required. While many studies have examined the effects of non‐natives on components of native plant performance, studies that decompose the net fitness effects of non‐natives from other anthropogenic stressors on population growth rate are lacking.
We used 6 years of detailed demographic data to parameterize a size‐dependent integral projection model to examine the individual and combined effects of an allelochemical‐producing invader (
Alliaria petiolata ) and an overabundant ungulate herbivore(Odocoileus virginianus ) on the population dynamics of an understory perennial (Trillium erectum ).We show that
Alliaria consistently and negatively affects the population dynamics ofTrillium . Specifically, this invader reduces native population growth rate and alters the size distribution of the population at equilibrium.Alliaria also works in concert with the known negative impacts of overabundant white‐tailed deer, illustrating the additive effects of anthropogenic stressors on native plant dynamics.Synthesis .Alliaria's effects on vital rates differed in magnitude and sign across the native's life cycle, highlighting the importance of detailed demographic analyses. Our study provides novel empirical support for the claim that non‐native invasive species can significantly and directly reduce the fitness of native plants. -
Abstract Hurricanes cause dramatic changes to forests by opening the canopy and depositing debris onto the forest floor. How invasive rodent populations respond to hurricanes is not well understood, but shifts in rodent abundance and foraging may result from scarce fruit and seed resources that follow hurricanes. We conducted studies in a wet tropical forest in Puerto Rico to better understand how experimental (canopy trimming experiment) and natural (Hurricane Maria) hurricane effects alter populations of invasive rodents (
Rattus rattus [rats] andMus musculus [mice]) and their foraging behaviors. To monitor rodent populations, we used tracking tunnels (inked and baited cards inside tunnels enabling identification of animal visitors' footprints) within experimental hurricane plots (arborist trimmed in 2014) and reference plots (closed canopy forest). To assess shifts in rodent foraging, we compared seed removal of two tree species (Guarea guidonia andPrestoea acuminata ) between vertebrate‐excluded and free‐access treatments in the same experimental and reference plots, and did so 3 months before and 9 months after Hurricane Maria (2017). Trail cameras were used to identify animals responsible for seed removal. Rat incidences generated from tracking tunnel surveys indicated that rat populations were not significantly affected by experimental or natural hurricanes. Before Hurricane Maria there were no mice in the forest interior, yet mice were present in forest plots closest to the road after the hurricane, and their forest invasion coincided with increased grass cover resulting from open forest canopy. Seed removal ofGuarea andPrestoea across all plots was rat dominated (75%–100% rat‐removed) and was significantly less after than before Hurricane Maria. However, following Hurricane Maria, the experimental hurricane treatment plots of 2014 had 3.6 times greater seed removal by invasive rats than did the reference plots, which may have resulted from rats selecting post‐hurricane forest patches with greater understory cover for foraging. Invasive rodents are resistant to hurricane disturbance in this forest. Predictions of increased hurricane frequency from expected climate change should result in forest with more frequent periods of grassy understories and mouse presence, as well as with heightened rat foraging for fruit and seed in preexisting areas of disturbance.