skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Chemical Separation and Measuring Technique for Titanium Isotopes for Titanium Ores and Iron-Rich Minerals
Ti-isotope fractionation on the most Ti-rich minerals on Earth has not been reported. Therefore, we present a chemical preparation and separation technique for Ti-rich minerals for mineralogic, petrologic, and economic geologic studies. A two-stage ion-exchange column procedure modified from the previous literature is used in the current study to separate Ti from Fe-rich samples, while α-TiO2 does not require chemical separation. Purified solutions in conjunction with solution standards were measured on two different instruments with dry plasma and medium-resolution mode providing mass-dependent results with the lowest errors. 49/47TiOL-Ti for the solution and solids analyzed here demonstrate a range of >5‰ far greater than the whole procedural 1 error of 0.10‰ for a synthetic compound and 0.07‰ for the mineral magnetite; thus, the procedure produces results is resolvable within the current range of measured Ti-isotope fractionation in these minerals.  more » « less
Award ID(s):
1924177
PAR ID:
10384501
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Minerals
Volume:
12
Issue:
5
ISSN:
2075-163X
Page Range / eLocation ID:
644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ti‐isotope fractionation on the most Ti‐rich minerals on Earth has not been reported. Therefore, we present a chemical preparation and separation technique for Ti‐rich minerals for mineralogic, petrologic, and economic geologic studies. A two‐stage ion‐exchange column procedure modified from the previous literature is used in the current study to separate Ti from Fe‐rich samples, while α‐TiO2 does not require chemical separation. Purified solutions in conjunction with solution standards were measured on two different instruments with dry plasma and medium‐resolution mode providing mass‐dependent results with the lowest errors. 49/47TiOL‐Ti for the solution and solids analyzed here demonstrate a range of >5‰ far greater than the whole procedural 1 error of 0.10‰ for a synthetic compound and 0.07‰ for the mineral magnetite; thus, the procedure produces results is resolvable within the current range of measured Ti‐isotope fractionation in these minerals. 
    more » « less
  2. Titanium (Ti) typically exhibits low mobility in geologic fluids due to the low aqueous solubility of common (Fe-)Ti oxide minerals. Consequently, Ti isotope variations (δ49/47Ti, given as δ49Ti) in geologic systems are primarily attributed to magmatic differentiation. Thus, the potential for fluid-mineral fractionation has received less attention. However, ligand-rich fluids are capable of mobilizing Ti as observed in natural systems and laboratory studies. As hydrothermal ore mineralization is commonly associated with ligand-rich brines capable of transporting significant quantities of metals, Ti isotopes may aid in understanding mineralization and alteration in complex hydrothermal systems. Here we present data from computational modeling of various Ti coordination complexes theorized to exist in geologic systems and/or under relevant experimental conditions as well as computed fractionation factors for various Ti-bearing crystalline phases to investigate the basic mechanics of equilibrium fluid-mineral Ti isotope fractionation. These results indicate that equilibrium fluid-mineral Ti isotope exchange between our modeled Ti complexes and phases with 6-coordinated Ti is predicted to generally lead to enrichment of heavy Ti isotopes in the fluid. Because minerals with 6-coordinated Ti (such as magnetite and ilmenite) are the most important reservoirs of Ti in the solid Earth, Ti isotope equilibration between terrestrial rocks and fluids can be generalized to enrich the fluid in heavy Ti isotopes. We also performed magnetite-ülvospinel leaching experiments to investigate fluid-mineral Ti isotope fractionation in this phase. Mineral leaching experiments varying acid strength, leaching temperature, and reaction time with HCl and HF qualitatively support the prediction that the fluid phase will become enriched in heavy Ti isotopes during fluid-mineral interactions that approach equilibrium with Ti-rich magnetite. Additionally, the leaching data also suggest that the fluid becomes slightly enriched in lighter Ti isotopes when Ti exchange is limited—potentially due to kinetic effects. Therefore, magnetite from natural systems may be depleted in heavy Ti isotopes during regenerative mineral replacement involving equilibration with fluids or may possibly become depleted in light Ti isotopes under a kinetic fractionation regime—leading to mineral δ49Ti values that are insufficiently explained by magmatic differentiation or inter-mineral fractionation. These results are a first look at fluid-mineral interactions that may affect Ti isotope fractionation in hydrothermal mineral systems, and Ti isotopes should be further studied as a potential method of understanding aqueous metal transport and tracing alteration in mineral deposits. 
    more » « less
  3. Titanium and Fe isotopic compositions of lavas from a calc-alkaline differentiation suite and corresponding mineral separates from the Rindjani Volcano, Indonesia show that Fe and Ti isotopic fractionations between minerals and melts are lower than those recorded in other suites at all stages of differentiation. The limited isotopic fractionation for Ti is likely due to low-Ti magnetite and clinopyroxene being the dominant carriers of Ti in Rindjani lavas, as these minerals are thought to have limited equilibrium Ti isotopic fractionation relative to silicate magmas. Other magmatic differentiation suites controlled by removal of Ti-rich magnetite and characterized by a lesser role of clinopyroxene have larger Ti isotopic fractionations. This effect is an indirect consequence of the elevated Fe3+/Fe2+ ratio of calc-alkaline magmas such as Rindjani, which promotes Fe3+ incorporation into magnetite at the expense of Fe2+-Ti4+ pairs, such that increased oxygen fugacity will subdue Ti isotopic fractionation in global magmatic series. Similarly, we find negligible Fe isotopic fractionation in Rindjani bulk rocks and mineral separates, unlike previous studies. This is also likely due to the oxidized nature of the Rindjani differentiation suite, which leads to similar Fe3+/Fe2+ ratios in melt and minerals and decreases overall mineral-melt Fe fractionation factors. Paired Ti and Fe isotopic analyses may therefore represent a powerful tool to assess oxygen fugacity during differentiation, independent from Fe 3+ determinations of erupted samples. 
    more » « less
  4. Stable lithium isotopes (δ7Li) of CaCO3 minerals have increasingly been used as a tracer for changes in silicate weathering processes. However, there is limited understanding of the influence of physical and chemical conditions on δ7Li values of CaCO3 minerals during their formation in aqueous solutions. Here, we examined Li isotope fractionation in inorganic calcite and aragonite precipitation experiments with systematic manipulations of solution pH and concentrations of total dissolved inorganic carbon species ([DIC] ≈ [HCO3−] + [CO32−]) and calcium ion (Ca2+). Calcite and aragonite samples had δ7Li values lower than those of dissolved Li in solutions by about 3‰ and 16‰, respectively, indicating preferential uptake of the lighter 6Li isotopes. Aragonite consistently had δ7Li values lower than those of calcite by ∼13‰, likely due to differences in Li coordination and thereby the strength of bonds formed by/with Li within the respective mineral structure. We observed no statistically significant changes in aragonite nor calcite δ7Li values in response to changing solution pH, [DIC], [Ca2+], and CaCO3 precipitation rates, indicating our solution chemistry manipulations imposed little effect on Li isotope fractionation. These findings lead us to argue that the observed Li isotope fractionations in calcite and aragonite with respect to dissolved Li in solutions are dominated by equilibrium isotope effects, and that kinetic effects for δ7Li values in CaCO3 are either non-existent or too small to be expressed under our experimental conditions. 
    more » « less
  5. Abstract Lawsonite is a major host mineral of trace elements (TEs; e.g. REE, Sr, Pb, U, Th) and H2O in various rock types (metabasite, metasediment, metasomatite) over a wide range of depths in subduction zones. Consequently, the composition of lawsonite is a useful archive to track chemical exchanges that occurred during subduction and/or exhumation, as recorded in high-pressure/low-temperature (HP/LT) terranes. This study provides an extensive dataset of major element and TE compositions of lawsonite in HP/LT rocks from two mélanges (Franciscan/USA; Rio San Juan/Dominican Republic), two structurally coherent terranes (Tavşanlı/Turkey; Alpine Corsica/France), and the eclogite blocks of the Pinchi Lake/Canada complex. Bulk major and TE compositions were also determined for lawsonite-bearing host rocks to understand petrogenesis and assess compositional evolution. Most analyzed mélange and coherent-terrane metabasalts have normal mid-ocean ridge/back-arc basin basalt signatures and they preserve compositional evidence supporting interactions with (meta)sediment ± metagabbro/serpentinite (e.g. LILE/LREE enrichments; Ni/Cr enrichments). Most lawsonite grains analyzed are compositionally zoned in transition-metal elements (Fe, Ti, Cr), other TEs (e.g. Sr, Pb), and/or REE, with some grains showing compositional variations that correlate with zoning patterns (e.g. Ti-sector zoning, core-to-rim zoning in Fe, Cr-oscillatory zoning). Our results suggest that compositional variations in lawsonite formed in response to crystallographic control (in Ti-sector zoning), fluid–host rock interactions, modal changes in minerals, and/or element fractionation with coexisting minerals that compete for TEs (e.g. epidote, titanite). The Cr/V and Sr/Pb ratios of lawsonite are useful to track the compositional influence of serpentinite/metagabbro (high Cr/V) and quartz-rich (meta)sediment (low Sr/Pb). Therefore, lawsonite trace and rare earth element compositions effectively record element redistribution driven by metamorphic reactions and fluid–rock interactions that occurred in subduction systems. 
    more » « less