skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bubbles spray aerosols: Certitudes and mysteries
Abstract Ocean spray aerosol formed by bubble bursting are at the core of a broad range of atmospheric processes: they are efficient cloud condensation nuclei and carry a variety of chemical, biological, and biomass material from the surface of the ocean to the atmosphere. The origin and composition of these aerosols is sensibly controlled by the detailed fluid mechanics of bubble bursting. This perspective summarizes our present-day knowledge on how bursting bubbles at the surface of a liquid pool contribute to its fragmentation, namely to the formation of droplets stripped from the pool, and associated mechanisms. In particular, we describe bounds and yields for each distinct mechanism, and the way they are sensitive to the bubble production and environmental conditions. We also underline the consequences of each mechanism on some of the many air-sea interactions phenomena identified to date. Attention is specifically payed at delimiting the known from the unknown and the certitudes from the speculations.  more » « less
Award ID(s):
1849762
PAR ID:
10384518
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
1
Issue:
5
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhang, Jiahua (Ed.)
    Abstract Microplastics are globally ubiquitous in marine environments, and their concentration is expected to continue rising at significant rates as a result of human activity. They present a major ecological problem with well-documented environmental harm. Sea spray from bubble bursting can transport salt and biological material from the ocean into the atmosphere, and there is a need to quantify the amount of microplastic that can be emitted from the ocean by this mechanism. We present a mechanistic study of bursting bubbles transporting microplastics. We demonstrate and quantify that jet drops are efficient at emitting microplastics up to 280μm in diameter and are thus expected to dominate the emitted mass of microplastic. The results are integrated to provide a global microplastic emission model which depends on bubble scavenging and bursting physics; local wind and sea state; and oceanic microplastic concentration. We test multiple possible microplastic concentration maps to find annual emissions ranging from 0.02 to 7.4—with a best guess of 0.1—mega metric tons per year and demonstrate that while we significantly reduce the uncertainty associated with the bursting physics, the limited knowledge and measurements on the mass concentration and size distribution of microplastic at the ocean surface leaves large uncertainties on the amount of microplastic ejected. 
    more » « less
  2. Abstract Bubbles bursting at the ocean surface are an important source of ocean‐spray aerosol, with implications on radiative and cloud processes. Yet, very large uncertainties exist on the role of key physical controlling parameters, including wind speed, sea state and water temperature. We propose a mechanistic sea spray generation function that is based on the physics of bubble bursting. The number and mean droplet radius of jet and film drops is described by scaling laws derived from individual bubble bursting laboratory and numerical experiments, as a function of the bubble radius and the water physico‐chemical properties (viscosity, density and surface tension, all functions of temperature), with drops radii at production from 0.1 to 500 µm. Next, we integrate over the bubble size distribution entrained by breaking waves. Finally, the sea spray generation function is obtained by considering the volume flux of entrained bubbles due to breaking waves in the field constrained by the third moment of the breaking distribution (akin to the whitecap coverage). This mechanistic approach naturally integrates the role of wind and waves via the breaking distribution and entrained air flux, and a sensitivity to temperature via individual bubble bursting mechanisms. The resulting sea spray generation function has not been tuned or adjusted to match any existing data sets, in terms of magnitude of sea salt emissions and recently observed temperature dependencies. The remarkable coherence between the model and observations of sea salt emissions therefore strongly supports the mechanistic approach and the resulting sea spray generation function. 
    more » « less
  3. Air bubbles at the surface of water end their life in a particular way: when bursting, they may eject drops of liquid in the surrounding environment. Many uncertainties remain regarding collective effects of bubbles at the water–air interface, despite extensive efforts to describe the bursting mechanisms, motivated by their critical importance in mass transfers between the ocean and the atmosphere in the production of sea spray aerosols. We investigate the effect of surfactant on the collective dynamics and statistics of air bubbles evolving freely at the surface of water, through an experimental set-up controlling the bulk distribution of bubbles with nearly monodisperse millimetric air bubbles. We observe that for low contamination, bubble coalescence is inevitable and leads to a broad surface size distribution. For higher surfactant concentrations, coalescence at the surface is prevented and bubble lifetime is increased, leading to the formation of rafts with a surface size distribution identical to the bulk distribution. This shows that surface contamination has a first-order influence on the transfer function from bulk size distribution to surface size distribution, an intermediate step which needs to be considered when developing sea spray source function as droplet production by bubble bursting depends on the bubble size. We measure the bursting and merging rates of bubbles as a function of contamination through a complementary freely decaying raft experiment. We propose a cellular automaton model that includes the minimal ingredients to reproduce the experimental results in the statistically stationary configuration: production, coalescence and bursting after a finite lifetime. 
    more » « less
  4. Abstract Gas bubbles bursting at the sea surface produce drops, which contribute to marine aerosols. The contamination or enrichment of water by surface‐active agents, of biological or anthropogenic origin, has long been recognized as affecting the bubble bursting processes and the spray composition. However, despite an improved understanding of the physics of a single bursting event, a quantitative understanding of the role of the physico‐chemical conditions on assemblies of bursting bubbles remains elusive. We present experiments on the drop production by millimetric, collective bursting bubbles, under varying surfactant concentration and bubble density. We demonstrate that the production of supermicron droplets (with radius larger than 35 μm) is non‐monotonic as the surfactant concentration increases. The bursting efficiency is optimal for short‐lived, sparsely distributed and non‐coalescing bubbles. We identify the combined role of contamination on the surface bubble arrangement and the modification of the jet drop production process in the bursting efficiency. 
    more » « less
  5. Abstract Bubbles entrained by ocean waves rise to the surface and burst, creating a shower of droplets which contribute to sea spray aerosols. Submicron‐sized droplets, of which an estimated 60%–80% come from a bursting bubble film cap, play a key role in global climate atmospheric processes. However, many aspects of predicting the number and size of submicron drops emitted from a bursting bubble remain unknown. It is well‐documented that higher salinity increases submicron droplet production, which has been attributed to the role of salt in the suppression of bubble coalescence. We experimentally show that submicron drop production increases with salinity despite using a salt that does not affect bubble coalescence, indicating that salinity plays a role in the physics of submicron aerosol formation beyond coalescence. Laboratory experiments are conducted using sodium acetate solutions of salinityS = 0.001–0.1 M with millimeter‐sized bubbles generated via a needle. Unlike previous studies, the measured droplet size distributions are converted to formation diameter, revealing that the peak aerosol formation diameter decreases with higher salinity. Applying this diameter conversion to past studies, we find the peak formation diameter exhibits a scaling ofDform ∼ S−0.32across three orders of magnitude in salinity and for a variety of salts, bubble coalescence behaviors, and bubble generation mechanisms. This result suggests that salinity has a systematic effect on the length scale of the rupturing bubble film which generates the aerosols. Consequently, salinity likely impacts the submicron aerosol production in oceanic environments even if bubble coalescence is negligible. 
    more » « less