skip to main content


Title: A new method for finding nearby white dwarfs exoplanets and detecting biosignatures
ABSTRACT We demonstrate that the James Webb Space Telescope (JWST) can detect infrared (IR) excess from the blended light spectral energy distribution of spatially unresolved terrestrial exoplanets orbiting nearby white dwarfs. We find that JWST is capable of detecting warm (habitable-zone; Teq = 287 K) Earths or super-Earths and hot (400–1000 K) Mercury analogues in the blended light spectrum around the nearest 15 isolated white dwarfs with 10 h of integration per target using MIRI’s medium-resolution spectrograph (MRS). Further, these observations constrain the presence of a CO2-dominated atmosphere on these planets. The technique is nearly insensitive to system inclination, and thus observation of even a small sample of white dwarfs could place strong limits on the occurrence rates of warm terrestrial exoplanets around white dwarfs in the solar neighbourhood. We find that JWST can also detect exceptionally cold (100–150 K) Jupiter-sized exoplanets via MIRI broad-band imaging at $\lambda = 21\, \mathrm{\mu m}$ for the 34 nearest (<13 pc) solitary white dwarfs with 2 h of integration time per target. Using IR excess to detect thermal variations with orbital phase or spectral absorption features within the atmosphere, both of which are possible with long-baseline MRS observations, would confirm candidates as actual exoplanets. Assuming an Earth-like atmospheric composition, we find that the detection of the biosignature pair O3+CH4 is possible for all habitable-zone Earths (within 6.5 pc; six white dwarf systems) or super-Earths (within 10 pc; 17 systems) orbiting white dwarfs with only 5–36 h of integration using MIRI’s low-resolution spectrometer.  more » « less
Award ID(s):
1910969
NSF-PAR ID:
10384541
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2622 to 2638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. Terrestrial exoplanets in the habitable zone are likely a common occurrence. The long-term goal is to characterize the atmospheres of dozens of such objects. The Large Interferometer For Exoplanets (LIFE) initiative aims to develop a space-based mid-infrared (MIR) nulling interferometer to measure the thermal emission spectra of such exoplanets. Aims. We investigate how well LIFE could characterize a cloudy Venus-twin exoplanet. This allows us to: (1) test our atmospheric retrieval routine on a realistic non-Earth-like MIR emission spectrum of a known planet, (2) investigate how clouds impact retrievals, and (3) further refine the LIFE requirements derived in previous Earth-centered studies. Methods. We ran Bayesian atmospheric retrievals for simulated LIFE observations of a Venus-twin exoplanet orbiting a Sun-like star located 10 pc from the observer. The LIFE SIM noise model accounted for all major astrophysical noise sources. We ran retrievals using different models (cloudy and cloud-free) and analyzed the performance as a function of the quality of the LIFE observation. This allowed us to determine how well the atmosphere and clouds are characterizable depending on the quality of the spectrum. Results. At the current minimal resolution ( R = 50) and signal-to-noise ( S / N = 10 at 11.2 μ m) requirements for LIFE, all tested models suggest a CO 2 -rich atmosphere (≥30% in mass fraction). Further, we successfully constrain the atmospheric pressure-temperature ( P–T ) structure above the cloud deck ( P–T uncertainty ≤ ± 15 K). However, we struggle to infer the main cloud properties. Further, the retrieved planetary radius ( R pl ), equilibrium temperature ( T eq ), and Bond albedo ( A B ) depend on the model. Generally, a cloud-free model performs best at the current minimal quality and accurately estimates R pl , T eq , and A B . If we consider higher quality spectra (especially S / N = 20), we can infer the presence of clouds and pose first constraints on their structure. Conclusions. Our study shows that the minimal R and S/N requirements for LIFE suffice to characterize the structure and composition of a Venus-like atmosphere above the cloud deck if an adequate model is chosen. Crucially, the cloud-free model is preferred by the retrieval for low spectral qualities. We thus find no direct evidence for clouds at the minimal R and S / N requirements and cannot infer the thickness of the atmosphere. Clouds are only constrainable in MIR retrievals of spectra with S / N ≥ 20. The model dependence of our retrieval results emphasizes the importance of developing a community-wide best-practice for atmospheric retrieval studies. 
    more » « less
  2. Abstract

    Populating the exoplanet mass–radius diagram in order to identify the underlying relationship that governs planet composition is driving an interdisciplinary effort within the exoplanet community. The discovery of hot super-Earths—a high-temperature, short-period subset of the super-Earth planet population—has presented many unresolved questions concerning the formation, evolution, and composition of rocky planets. We report the discovery of a transiting, ultra-short-period hot super-Earth orbitingTOI-1075(TIC351601843), a nearby (d= 61.4 pc) late-K/early-M-dwarf star, using data from the Transiting Exoplanet Survey Satellite. The newly discovered planet has a radius of 1.7910.081+0.116Rand an orbital period of 0.605 day (14.5 hr). We precisely measure the planet mass to be 9.951.30+1.36Musing radial velocity measurements obtained with the Planet Finder Spectrograph mounted on the Magellan II telescope. Our radial velocity data also show a long-term trend, suggesting an additional planet in the system. While TOI-1075 b is expected to have a substantial H/He atmosphere given its size relative to the radius gap, its high density (9.321.85+2.05g cm−3) is likely inconsistent with this possibility. We explore TOI-1075 b’s location relative to the M-dwarf radius valley, evaluate the planet’s prospects for atmospheric characterization, and discuss potential planet formation mechanisms. Studying the TOI-1075 system in the broader context of ultra-short-period planetary systems is necessary for testing planet formation and evolution theories and density-enhancing mechanisms and for future atmospheric and surface characterization studies via emission spectroscopy with the JWST.

     
    more » « less
  3. Abstract

    More than 36 yr have passed since the discovery of the infrared excess from circumstellar dust orbiting the white dwarf G29-38, which at 17.5 pc it is the nearest and brightest of its class. The precise morphology of the orbiting dust remains only marginally constrained by existing data, subject to model-dependent inferences, and thus fundamental questions of its dynamical origin and evolution persist. This study presents a means to constrain the geometric distribution of the emitting dust using stellar pulsations measured at optical wavelengths as a variable illumination source of the dust, which reradiates primarily in the infrared. By combining optical photometry from the Whole Earth Telescope with 0.7–2.5μm spectroscopy obtained with SpeX at NASA’s Infrared Telescope Facility, we detect luminosity variations at all observed wavelengths, with variations at most wavelengths corresponding to the behavior of the pulsating stellar photosphere, but toward the longest wavelengths the light curves probe the corresponding time variability of the circumstellar dust. In addition to developing methodology, we find the pulsation amplitudes decrease with increasing wavelength for principal pulsation modes, yet increase beyond ≈2μm for nonlinear combination frequencies. We interpret these results as combination modes derived from the principal modes of identicalvalues and discuss the implications for the morphology of the warm dust. We also draw attention to some discrepancies between our findings and theoretical expectations for the results of the nonlinearity imposed by the surface convection zone on mode–mode interactions and on the behavior of the first harmonic of the highest-amplitude pulsation mode.

     
    more » « less
  4. Abstract We present the occurrence rates for rocky planets in the habitable zones (HZs) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η ⊕ as the HZ occurrence of planets with radii between 0.5 and 1.5 R ⊕ orbiting stars with effective temperatures between 4800 and 6300 K. We find that η ⊕ for the conservative HZ is between (errors reflect 68% credible intervals) and planets per star, while the optimistic HZ occurrence is between and planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates between using Poisson likelihood Bayesian analysis and using Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95% confidence that, on average, the nearest HZ planet around G and K dwarfs is ∼6 pc away and there are ∼4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun. 
    more » « less
  5. ABSTRACT

    This work combines spectroscopic and photometric data of the polluted white dwarf WD 0141−675, which has a now retracted astrometric super-Jupiter candidate, and investigates the most promising ways to confirm Gaia astrometric planetary candidates and obtain follow-up data. Obtaining precise radial velocity measurements for white dwarfs is challenging due to their intrinsic faint magnitudes, lack of spectral absorption lines, and broad spectral features. However, dedicated radial velocity campaigns are capable of confirming close-in giant exoplanets (a few MJup) around polluted white dwarfs, where additional metal lines aid radial velocity measurements. Infrared emission from these giant exoplanets is shown to be detectable with JWST Mid-Infrared Instrument (MIRI) and will provide constraints on the formation of the planet. Using the initial Gaia astrometric solution for WD 0141−675 as a case study, if there were a planet with a 33.65 d period or less with a nearly edge-on orbit, (1) ground-based radial velocity monitoring limits the mass to <15.4 MJup, and (2) space-based infrared photometry shows a lack of infrared excess and in a cloud-free planetary cooling scenario, a substellar companion would have to be <16 MJup and be older than 3.7 Gyr. These results demonstrate how radial velocities and infrared photometry can probe the mass of the objects producing some of the astrometric signals, and rule out parts of the brown dwarf and planet mass parameter space. Therefore, combining astrometric data with spectroscopic and photometric data is crucial to both confirm and characterize astrometric planet candidates around white dwarfs.

     
    more » « less