skip to main content


Search for: All records

Award ID contains: 1910969

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    AF Lep A+b is a remarkable planetary system hosting a gas-giant planet that has the lowest dynamical mass among directly imaged exoplanets. We present an in-depth analysis of the atmospheric composition of the star and planet to probe the planet’s formation pathway. Based on new high-resolution spectroscopy of AF Lep A, we measure a uniform set of stellar parameters and elemental abundances (e.g., [Fe/H] = −0.27 ± 0.31 dex). The planet’s dynamical mass (2.80.5+0.6MJup) and orbit are also refined using published radial velocities, relative astrometry, and absolute astrometry. We usepetitRADTRANSto perform chemically consistent atmospheric retrievals for AF Lep b. The radiative–convective equilibrium temperature profiles are incorporated as parameterized priors on the planet’s thermal structure, leading to a robust characterization for cloudy self-luminous atmospheres. This novel approach is enabled by constraining the temperature–pressure profiles via the temperature gradient(dlnT/dlnP), a departure from previous studies that solely modeled the temperature. Through multiple retrievals performed on different portions of the 0.9–4.2μm spectrophotometry, along with different priors on the planet’s mass and radius, we infer that AF Lep b likely possesses a metal-enriched atmosphere ([Fe/H] > 1.0 dex). AF Lep b’s potential metal enrichment may be due to planetesimal accretion, giant impacts, and/or core erosion. The first process coincides with the debris disk in the system, which could be dynamically excited by AF Lep b and lead to planetesimal bombardment. Our analysis also determinesTeff≈ 800 K,log(g)3.7dex, and the presence of silicate clouds and disequilibrium chemistry in the atmosphere. Straddling the L/T transition, AF Lep b is thus far the coldest exoplanet with suggested evidence of silicate clouds.

     
    more » « less
    Free, publicly-accessible full text available October 17, 2024
  2. Abstract

    Constraining L dwarf properties from their spectra is challenging. Near-infrared (NIR) spectra probe a limited range of pressures, while many species condense within their photospheres. Condensation creates two complexities: gas-phase species “rain out” (decreasing in abundances by many orders of magnitude) and clouds form. We designed tests using synthetic data to determine the best approach for retrieving L dwarf spectra, isolating the challenges in the absence of cloud opacity. We conducted atmospheric retrievals on synthetic cloud-free L dwarf spectra derived from the Sonora Bobcat models at SpeX resolution using a variety of thermal and chemical abundance profile parameterizations. For objects hotter than L5 (Teff∼ 1700 K), the limited pressure layers probed in the NIR are mostly convective; parameterized pressure–temperature (PT) profiles bias results and free, unsmoothed profiles should be used. Only when many layers both above and below the radiative-convective boundary are probed can parameterized profiles provide accurate results. Furthermore, a nonuniform abundance profile for FeH is needed to accurately retrieve bulk properties of early-to-mid L dwarfs. Nonuniform prescriptions for other gases in NIR retrievals may also be warranted near the L/T transition (CH4) and early Y dwarfs (Na and K). We demonstrate the utility of using realistic, self-consistent models to benchmark retrievals and suggest how they can be used in the future.

     
    more » « less
  3. Abstract

    We present an atmospheric retrieval analysis of a pair of highly variable, ∼200 Myr old, early T type planetary-mass exoplanet analogs SIMP J01365662+0933473 and 2MASS J21392676+0220226 using the Brewster retrieval framework. Our analysis, which makes use of archival 1–15μm spectra, finds almost identical atmospheres for both objects. For both targets, we find that the data is best described by a patchy, high-altitude forsterite (Mg2SiO4) cloud above a deeper, optically thick iron (Fe) cloud. Our model constrains the cloud properties well, including the cloud locations and cloud particle sizes. We find that the patchy forsterite slab cloud inferred from our retrieval may be responsible for the spectral behavior of the observed variability. Our retrieved cloud structure is consistent with the atmospheric structure previously inferred from spectroscopic variability measurements, but clarifies this picture significantly. We find consistent C/O ratios for both objects, which supports their formation within the same molecular cloud in the Carina-Near moving group. Finally, we note some differences in the constrained abundances of H2O and CO, which may be caused by data quality and/or astrophysical processes such as auroral activity and their differing rotation rates. The results presented in this work provide a promising preview of the detail with which we will characterize extrasolar atmospheres with JWST, which will yield higher-quality spectra across a wider wavelength range.

     
    more » « less
  4. Abstract

    Comparison of échelle spectra to synthetic models has become a computational statistics challenge, with over 10,000 individual spectral lines affecting a typical cool star échelle spectrum. Telluric artifacts, imperfect line lists, inexact continuum placement, and inflexible models frustrate the scientific promise of these information-rich data sets. Here we debut an interpretable machine-learning frameworkblaséthat addresses these and other challenges. The semiempirical approach can be viewed as “transfer learning”—first pretraining models on noise-free precomputed synthetic spectral models, then learning the corrections to line depths and widths from whole-spectrum fitting to an observed spectrum. The auto-differentiable model employs back-propagation, the fundamental algorithm empowering modern deep learning and neural networks. Here, however, the 40,000+ parameters symbolize physically interpretable line profile properties such as amplitude, width, location, and shape, plus radial velocity and rotational broadening. This hybrid data-/model-driven framework allows joint modeling of stellar and telluric lines simultaneously, a potentially transformative step forward for mitigating the deleterious telluric contamination in the near-infrared. Theblaséapproach acts as both a deconvolution tool and semiempirical model. The general-purpose scaffolding may be extensible to many scientific applications, including precision radial velocities, Doppler imaging, chemical abundances for Galactic archeology, line veiling, magnetic fields, and remote sensing. Its sparse-matrix architecture and GPU acceleration makeblaséfast. The open-source PyTorch-based codeblaseincludes tutorials, Application Programming Interface documentation, and more. We show how the tool fits into the existing Python spectroscopy ecosystem, demonstrate a range of astrophysical applications, and discuss limitations and future extensions.

     
    more » « less
  5. Abstract

    We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16μm. At a separation of ∼0.″82 (8731+108au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σcontrast limits of ∼1 × 10−5and ∼2 × 10−4at 1″ for NIRCam at 4.4μm and MIRI at 11.3μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3MJupbeyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by aBT-SETTLatmospheric model from 1 to 16μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained betweenlogLbol/L= −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2MJup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Abstract

    We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b isa<20MJupwidely separated (∼8″,a= 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color–magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256 b with JWST's NIRSpec IFU and MIRI MRS modes for coverage from 1 to 20μm at resolutions of ∼1000–3700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the JWST spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion.

     
    more » « less
  7. ABSTRACT

    We present Gemini South/IGRINS observations of the 1060 K T6 dwarf 2MASS J08173001−6155158 with unprecedented resolution ($R\equiv \lambda /\Delta \lambda =45\, 000$) and signal-to-noise ratio (S/N > 200) for a late-type T dwarf. We use this benchmark observation to test the reliability of molecular line lists used up-to-date atmospheric models. We determine which spectroscopic regions should be used to estimate the parameters of cold brown dwarfs and, by extension, exoplanets. We present a detailed spectroscopic atlas with molecular identifications across the H and K bands of the near-infrared. We find that water (H2O) line lists are overall reliable. We find the most discrepancies amongst older methane (CH4) line lists, and that the most up-to-date CH4 line lists correct many of these issues. We identify individual ammonia (NH3) lines, a hydrogen sulfide (H2S) feature at 1.5900 $\mu$m, and a molecular hydrogen (H2) feature at 2.1218 $\mu$m. These are the first unambiguous detections of H2S and H2 absorption features in an extra-solar atmosphere. With the H2 detection, we place an upper limit on the atmospheric dust concentration of this T6 dwarf: at least 500 times less than the interstellar value, implying that the atmosphere is effectively dust-free. We additionally identify several features that do not appear in the model spectra. Our assessment of the line lists is valuable for atmospheric model applications to high-dispersion, low-S/N, high-background spectra, such as an exoplanet around a star. We demonstrate a significant enhancement in the detection of the CH4 absorption signal in this T6 dwarf with the most up-to-date line lists.

     
    more » « less
  8. Abstract The photometric and spectral variability of brown dwarfs probes heterogeneous temperature and cloud distributions and traces the atmospheric circulation patterns. We present a new 42 hr Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectral time series of VHS 1256-1257 b, a late L-type planetary-mass companion that has been shown to have one of the highest variability amplitudes among substellar objects. The light curve is rapidly evolving and best fit by a combination of three sine waves with different periods and a linear trend. The amplitudes of the sine waves and the linear slope vary with the wavelength, and the corresponding spectral variability patterns match the predictions by models invoking either heterogeneous clouds or thermal profile anomalies. Combining these observations with previous HST monitoring data, we find that the peak-to-valley flux difference is 33% ± 2% with an even higher amplitude reaching 38% in the J band, the highest amplitude ever observed in a substellar object. The observed light curve can be explained by maps that are composed of zonal waves, spots, or a mixture of the two. Distinguishing the origin of rapid light curve evolution requires additional long-term monitoring. Our findings underscore the essential role of atmospheric dynamics in shaping brown-dwarf atmospheres and highlight VHS 1256-1257 b as one of the most favorable targets for studying the atmospheres, clouds, and atmospheric circulation of planets and brown dwarfs. 
    more » « less
  9. ABSTRACT We demonstrate that the James Webb Space Telescope (JWST) can detect infrared (IR) excess from the blended light spectral energy distribution of spatially unresolved terrestrial exoplanets orbiting nearby white dwarfs. We find that JWST is capable of detecting warm (habitable-zone; Teq = 287 K) Earths or super-Earths and hot (400–1000 K) Mercury analogues in the blended light spectrum around the nearest 15 isolated white dwarfs with 10 h of integration per target using MIRI’s medium-resolution spectrograph (MRS). Further, these observations constrain the presence of a CO2-dominated atmosphere on these planets. The technique is nearly insensitive to system inclination, and thus observation of even a small sample of white dwarfs could place strong limits on the occurrence rates of warm terrestrial exoplanets around white dwarfs in the solar neighbourhood. We find that JWST can also detect exceptionally cold (100–150 K) Jupiter-sized exoplanets via MIRI broad-band imaging at $\lambda = 21\, \mathrm{\mu m}$ for the 34 nearest (<13 pc) solitary white dwarfs with 2 h of integration time per target. Using IR excess to detect thermal variations with orbital phase or spectral absorption features within the atmosphere, both of which are possible with long-baseline MRS observations, would confirm candidates as actual exoplanets. Assuming an Earth-like atmospheric composition, we find that the detection of the biosignature pair O3+CH4 is possible for all habitable-zone Earths (within 6.5 pc; six white dwarf systems) or super-Earths (within 10 pc; 17 systems) orbiting white dwarfs with only 5–36 h of integration using MIRI’s low-resolution spectrometer. 
    more » « less
  10. Abstract We present the third discovery from the COol Companions ON Ultrawide orbiTS (COCONUTS) program, the COCONUTS-3 system, composed of the young M5 primary star UCAC4 374−046899 and the very red L6 dwarf WISEA J081322.19−152203.2. These two objects have a projected separation of 61 ′ ′ (1891 au) and are physically associated given their common proper motions and estimated distances. The primary star, COCONUTS-3A, has a mass of 0.123 ± 0.006 M ⊙ , and we estimate its age as 100 Myr to 1 Gyr based on its stellar activity (via H α and X-ray emission), kinematics, and spectrophotometric properties. We derive its bulk metallicity as 0.21 ± 0.07 dex using empirical calibrations established by older and higher-gravity M dwarfs and find that this [Fe/H] could be slightly underestimated according to PHOENIX models given COCONUTS-3A’s younger age. The companion, COCONUTS-3B, has a near-infrared spectral type of L6 ± 1 int-g , and we infer physical properties of T eff = 1362 − 73 + 48 K, log ( g ) = 4.96 − 0.34 + 0.15 dex, R = 1.03 − 0.06 + 0.12 R Jup , and M = 39 − 18 + 11 M Jup using its bolometric luminosity, its host star’s age, and hot-start evolution models. We construct cloudy atmospheric model spectra at the evolution-based physical parameters and compare them to COCONUTS-3B’s spectrophotometry. We find that this companion possesses ample condensate clouds in its photosphere ( f sed = 1) with the data–model discrepancies likely due to the models using an older version of the opacity database. Compared to field-age L6 dwarfs, COCONUTS-3B has fainter absolute magnitudes and a 120 K cooler T eff . Also, the J − K color of this companion is among the reddest for ultracool benchmarks with ages older than a few hundred megayears. COCONUTS-3 likely formed in the same fashion as stellar binaries given the companion-to-host mass ratio of 0.3 and represents a valuable benchmark to quantify the systematics of substellar model atmospheres. 
    more » « less