skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Voltage-controlled moiré potentials, propagation and luminescence of indirect excitons in MoSe2/WSe2 heterostructure
We present a new mechanism for exciton transport control based on tuning moiré potentials by voltage to enable delocalization, present long-range exciton propagation due to this mechanism, explore correlations between exciton luminescence and propagation properties.  more » « less
Award ID(s):
1905478
PAR ID:
10384565
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 Conference on Lasers and Electro-Optics (CLEO)
Page Range / eLocation ID:
SM2G.3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Interference patterns provide direct measurement of coherent propagation of matter waves in quantum systems. Superfluidity in Bose–Einstein condensates of excitons can enable long-range ballistic exciton propagation and can lead to emerging long-scale interference patterns. Indirect excitons (IXs) are formed by electrons and holes in separated layers. The theory predicts that the reduced IX recombination enables IX superfluid propagation over macroscopic distances. Here, we present dislocation-like phase singularities in interference patterns produced by condensate of IXs. We analyze how exciton vortices and skyrmions should appear in the interference experiments and show that the observed interference dislocations are not associated with these phase defects. We show that the observed interference dislocations originate from the moiré effect in combined interference patterns of propagating condensate matter waves. The interference dislocations are formed by the IX matter waves ballistically propagating over macroscopic distances. The long-range ballistic IX propagation is the evidence for IX condensate superfluidity. 
    more » « less
  2. Coupling between exciton states across the Brillouin zone in monolayer transition metal dichalcogenides can lead to ultrafast valley depolarization. Using time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS2. By comparing full 4D (kx,ky,E,t) data sets after both linearly and circularly polarized excitation, we are able to disentangle intervalley and intravalley exciton coupling dynamics. Recording in the exciton binding energy basis instead of excitation energy, we observe strong mixing between the B1s exciton and An>1 states. The photoelectron energy and momentum distributions observed from excitons populated via intervalley coupling (e.g. K− → K+) indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and center-of-mass momentum, consistent with intervalley Coulomb exchange. On longer timescales, exciton relaxation is accompanied by contraction of the momentum space distribution. 
    more » « less
  3. Abstract A long‐standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS3have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature. Here, it is found that the polarization of maximal exciton emission rotates locally, revealing three possible spin chain directions. This discovery establishes a new understanding of the antiferromagnet order hidden in previous neutron scattering and optical experiments. Furthermore, defect‐bound states are suggested as an alternative exciton formation mechanism that has yet to be explored in NiPS3. The supporting evidence includes chemical analysis, excitation power, and thickness dependent photoluminescence and first‐principles calculations. This mechanism for exciton formation is also consistent with the presence of strong phonon side bands. This study shows that anisotropic exciton photoluminescence can be used to read out local spin chain directions in antiferromagnets and realize multi‐functional devices via spin‐photon transduction. 
    more » « less
  4. Abstract Superconductivity and exciton condensation are fundamental phenomena in condensed matter physics, associated with the condensation of electron–electron and electron–hole pairs, respectively, into coherent quantum states. In this study, we present evidence of a superconductor to exciton condensate transition within the context of the three-band Hubbard model of copper-oxide-like materials. As the electron–electron repulsion increases, the superconducting phase is superseded by exciton condensation. In support of theoretical predictions—not yet realized experimentally—we observe the coexistence of the two condensates in the vicinity of the transition where the quantum states become a superposition of electron–electron and electron–hole condensates. Coexistence is rigorously computed from large eigenvalues and their eigenvectors in both the two-electron reduced density matrix (2-RDM) and the particle-hole RDM, which we obtain from a direct variational ground-state energy minimization with respect to the 2-RDM by semidefinite programming. We further discern that adjacentdorbitals and interveningporbitals facilitate electron–electron pairing between copper orbitals, thereby supporting the superexchange mechanism for superconductivity. These observations suggest the feasibility of witnessing a superconductor to exciton condensate transition in copper-oxide analogs, bearing significant implications for identifying materials conducive to efficient transport processes. 
    more » « less
  5. The transport of energy and information in semiconductors is limited by scattering between electronic carriers and lattice phonons, resulting in diffusive and lossy transport that curtails all semiconductor technologies. Using Re6Se8Cl2, a van der Waals (vdW) superatomic semiconductor, we demonstrate the formation of acoustic exciton-polarons, an electronic quasiparticle shielded from phonon scattering. We directly imaged polaron transport in Re6Se8Cl2at room temperature, revealing quasi-ballistic, wavelike propagation sustained for a nanosecond and several micrometers. Shielded polaron transport leads to electronic energy propagation lengths orders of magnitude greater than in other vdW semiconductors, exceeding even silicon over a nanosecond. We propose that, counterintuitively, quasi-flat electronic bands and strong exciton–acoustic phonon coupling are together responsible for the transport properties of Re6Se8Cl2, establishing a path to ballistic room-temperature semiconductors. 
    more » « less