Abstract The coupling between spin, charge, and lattice degrees of freedom plays an important role in a wide range of fundamental phenomena. Monolayer semiconducting transitional metal dichalcogenides have emerged as an outstanding platform for studying these coupling effects. Here, we report the observation of multiple valley phonons – phonons with momentum vectors pointing to the corners of the hexagonal Brillouin zone – and the resulting exciton complexes in the monolayer semiconductor WSe 2 . We find that these valley phonons lead to efficient intervalley scattering of quasi particles in both exciton formation and relaxation. This leads to a series of photoluminescence peaks as valley phonon replicas of dark trions. Using identified valley phonons, we also uncover an intervalley exciton near charge neutrality. Our work not only identifies a number of previously unknown 2D excitonic species, but also shows that monolayer WSe 2 is a prime candidate for studying interactions between spin, pseudospin, and zone-edge phonons. 
                        more » 
                        « less   
                    
                            
                            Momentum-Resolved Exciton Coupling and Valley Polarization Dynamics in Monolayer WS2
                        
                    
    
            Coupling between exciton states across the Brillouin zone in monolayer transition metal dichalcogenides can lead to ultrafast valley depolarization. Using time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS2. By comparing full 4D (kx,ky,E,t) data sets after both linearly and circularly polarized excitation, we are able to disentangle intervalley and intravalley exciton coupling dynamics. Recording in the exciton binding energy basis instead of excitation energy, we observe strong mixing between the B1s exciton and An>1 states. The photoelectron energy and momentum distributions observed from excitons populated via intervalley coupling (e.g. K− → K+) indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and center-of-mass momentum, consistent with intervalley Coulomb exchange. On longer timescales, exciton relaxation is accompanied by contraction of the momentum space distribution. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1935885
- PAR ID:
- 10345342
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The interactions between charges and excitons involve complex many-body interactions at high densities. The exciton-polaron model has been adopted to understand the Fermi sea screening of charged excitons in monolayer transition metal dichalcogenides. The results provide good agreement with absorption measurements, which are dominated by dilute bright exciton responses. Here we investigate the Fermi sea dressing of spin-forbidden dark excitons in monolayer WSe2. With a Zeeman field, the valley-polarized dark excitons show distinct p-doping dependence in photoluminescence when the carriers reach a critical density. This density can be interpreted as the onset of strongly modified Fermi sea interactions and shifts with increasing exciton density. Through valley-selective excitation and dynamics measurements, we also infer an intervalley coupling between the dark trions and exciton-polarons mediated by the many-body interactions. Our results reveal the evolution of Fermi sea screening with increasing exciton density and the impacts of polaron-polaron interactions, which lay the foundation for understanding electronic correlations and many-body interactions in 2D systems.more » « less
- 
            A tunable optical switching process based on spin valley quantum coherence in a hybrid system consisting of a WS2monolayer and a metallic nanoantenna is investigated. This process is induced by plasmonically-mediated intervalley exciton-plasmon coupling which is shown to be quite resilient against ultrafast valley decoherence.more » « less
- 
            We develop an ab initio nonadiabatic molecular dynamics (NAMD) method based on GW plus real-time Bethe-Salpeter equation ( GW + rtBSE-NAMD) for the spin-resolved exciton dynamics. From investigations on MoS 2 , we provide a comprehensive picture of spin-valley exciton dynamics where the electron-phonon (e-ph) scattering, spin-orbit interaction (SOI), and electron-hole (e-h) interactions come into play collectively. In particular, we provide a direct evidence that e-h exchange interaction plays a dominant role in the fast valley depolarization within a few picoseconds, which is in excellent agreement with experiments. Moreover, there are bright-to-dark exciton transitions induced by e-ph scattering and SOI. Our study proves that e-h many-body effects are essential to understand the spin-valley exciton dynamics in transition metal dichalcogenides and the newly developed GW + rtBSE-NAMD method provides a powerful tool for exciton dynamics in extended systems with time, space, momentum, energy, and spin resolution.more » « less
- 
            Abstract Monolayer transition-metal dichalcogenides (TMDCs) show a wealth of exciton physics. Here, we report the existence of a new excitonic species, the high-lying exciton (HX), in single-layer WSe 2 with an energy of ~3.4 eV, almost twice the band-edge A-exciton energy, with a linewidth as narrow as 5.8 meV. The HX is populated through momentum-selective optical excitation in the K -valleys and is identified in upconverted photoluminescence (UPL) in the UV spectral region. Strong electron-phonon coupling results in a cascaded phonon progression with equidistant peaks in the luminescence spectrum, resolvable to ninth order. Ab initio GW -BSE calculations with full electron-hole correlations explain HX formation and unmask the admixture of upper conduction-band states to this complex many-body excitation. These calculations suggest that the HX is comprised of electrons of negative mass. The coincidence of such high-lying excitonic species at around twice the energy of band-edge excitons rationalizes the excitonic quantum-interference phenomenon recently discovered in optical second-harmonic generation (SHG) and explains the efficient Auger-like annihilation of band-edge excitons.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    