skip to main content


Title: Effects of the environment on the multiplicity properties of stars in the STARFORGE simulations
ABSTRACT

Most observed stars are part of a multiple star system, but the formation of such systems and the role of environment and various physical processes is still poorly understood. We present a suite of radiation-magnetohydrodynamic simulations of star-forming molecular clouds from the STARFORGE project that include stellar feedback with varied initial surface density, magnetic fields, level of turbulence, metallicity, interstellar radiation field, simulation geometry and turbulent driving. In our fiducial cloud, the raw simulation data reproduces the observed multiplicity fractions for Solar-type and higher mass stars, similar to previous works. However, after correcting for observational incompleteness the simulation underpredicts these values. The discrepancy is likely due to the lack of disc fragmentation, as the simulation only resolves multiples that form either through capture or core fragmentation. The raw mass distribution of companions is consistent with randomly drawing from the initial mass function for the companions of $\gt 1\, \mathrm{M}_{\rm \odot }$ stars. However, accounting for observational incompleteness produces a flatter distribution similar to observations. We show that stellar multiplicity changes as the cloud evolves and anticorrelates with stellar density. This relationship also explains most multiplicity variations between runs, i.e. variations in the initial conditions that increase stellar density (increased surface density, reduced turbulence) also act to decrease multiplicity. While other parameters, such as metallicity, interstellar radiation, and geometry significantly affect the star formation history or the IMF, varying them produces no clear trend in stellar multiplicity properties.

 
more » « less
Award ID(s):
1652522 1748571 2009234 2202249
NSF-PAR ID:
10384594
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4693-4712
Size(s):
["p. 4693-4712"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    One of the key mysteries of star formation is the origin of the stellar initial mass function (IMF). The IMF is observed to be nearly universal in the Milky Way and its satellites, and significant variations are only inferred in extreme environments, such as the cores of massive elliptical galaxies and the Central Molecular Zone. In this work, we present simulations from the STARFORGE project that are the first cloud-scale radiation-magnetohydrodynamic simulations that follow individual stars and include all relevant physical processes. The simulations include detailed gas thermodynamics, as well as stellar feedback in the form of protostellar jets, stellar radiation, winds, and supernovae. In this work, we focus on how stellar radiation, winds, and supernovae impact star-forming clouds. Radiative feedback plays a major role in quenching star formation and disrupting the cloud; however, the IMF peak is predominantly set by protostellar jet physics. We find that the effect of stellar winds is minor, and supernovae ‘occur too late’ to affect the IMF or quench star formation. We also investigate the effects of initial conditions on the IMF. We find that the IMF is insensitive to the initial turbulence, cloud mass, and cloud surface density, even though these parameters significantly shape the star formation history of the cloud, including the final star formation efficiency. Meanwhile, the characteristic stellar mass depends weakly on metallicity and the interstellar radiation field, which essentially set the average gas temperature. Finally, while turbulent driving and the level of magnetization strongly influence the star formation history, they only influence the high-mass slope of the IMF.

     
    more » « less
  2. ABSTRACT

    We report the statistical properties of stars and brown dwarfs obtained from three radiation hydrodynamical simulations of star cluster formation with metallicities of 1, 1/10, and 1/100 of the solar value. The star-forming clouds are subjected to cosmic microwave background radiation that is appropriate for star formation at a redshift z = 5. The results from the three calculations are compared to each other, and to similar previously published calculations that had levels of background radiation appropriate for present-day (z = 0) star formation. Each of the calculations treats dust and gas temperatures separately and includes a thermochemical model of the diffuse interstellar medium. We find that whereas the stellar mass distribution is insensitive to the metallicity for present-day star formation, at z = 5 the characteristic stellar mass increases with increasing metallicity and the mass distribution has a deficit of brown dwarfs and low-mass stars at solar metallicity compared to the Galactic initial mass function. We also find that the multiplicity of M-dwarfs decreases with increasing metallicity at z = 5. These effects are a result of metal-rich gas being unable to cool to as low temperatures at z = 5 compared to at z = 0 due to the hotter cosmic microwave background radiation, which inhibits fragmentation at high densities.

     
    more » « less
  3. ABSTRACT

    Stars form in dense, clustered environments, where feedback from newly formed stars eventually ejects the gas, terminating star formation and leaving behind one or more star clusters. Using the STARFORGE simulations, it is possible to simulate this process in its entirety within a molecular cloud, while explicitly evolving the gas radiation and magnetic fields and following the formation of individual, low-mass stars. We find that individual star-formation sites merge to form ever larger structures, while still accreting gas. Thus clusters are assembled through a series of mergers. During the cluster assembly process, a small fraction of stars are ejected from their clusters; we find no significant difference between the mass distribution of the ejected stellar population and that of stars inside clusters. The star-formation sites that are the building blocks of clusters start out mass segregated with one or a few massive stars at their centre. As they merge the newly formed clusters maintain this feature, causing them to have mass-segregated substructures without themselves being centrally condensed. The merged clusters relax to a centrally condensed mass-segregated configuration through dynamical interactions between their members, but this process does not finish before feedback expels the remaining gas from the cluster. In the simulated runs, the gas-free clusters then become unbound and breakup. We find that turbulent driving and a periodic cloud geometry can significantly reduce clustering and prevent gas expulsion. Meanwhile, the initial surface density and level of turbulence have little qualitative effect on cluster evolution, despite the significantly different star formation histories.

     
    more » « less
  4. Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μ m toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity ( PI ), the polarization fraction ( PF ), and the plane-of-the-sky B-field angle ( χ B_POS ) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χ B POS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span ~3 orders of magnitude in Stokes I and PI and ~2 orders of magnitude in PF (from ~0.2 to ~ 20%). A large scatter in PI and PF is observed for a given value of I . Our analyses show a complex B-field structure when observed over the whole region (~ 10 pc); however, at smaller scales (~1 pc), χ B POS varies coherently along the crests of the filament network. The observed power spectrum of χ B POS can be well represented with a power law function with a slope of − 1.33 ± 0.23, which is ~20% shallower than that of I . We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χ B POS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density ( N H 2 ≳ 10 23  cm −2 ) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to ~ 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields. 
    more » « less
  5. Abstract While most simulations of the epoch of reionization have focused on single-stellar populations in star-forming dwarf galaxies, products of binary evolution are expected to significantly contribute to emissions of hydrogen-ionizing photons. Among these products are stripped stars (or helium stars), which have their envelopes stripped from interactions with binary companions, leaving an exposed helium core. Previous work has suggested these stripped stars can dominate the Lyman Continuum (LyC) photon output of high-redshift, low-luminosity galaxies post-starburst. Other sources of hard radiation in the early universe include zero-metallicity Population iii stars, which may have similar spectral energy distribution (SED) properties to galaxies with radiation dominated by stripped-star emissions. Here, we use four metrics (the power-law exponent over wavelength intervals 240–500 Å, 600–900 Å, and 1200–2000 Å, and the ratio of total luminosity in FUV wavelengths to LyC wavelengths) to compare the SEDs of simulated galaxies with only single-stellar evolution, galaxies containing stripped stars, and galaxies containing Population iii stars, with four different initial mass functions (IMFs). We find that stripped stars significantly alter SEDs in the LyC range of galaxies at the epoch of reionization. SEDs in galaxies with stripped stars have lower power-law indices in the LyC range and lower FUV to LyC luminosity ratios. These differences in SEDs are present at all considered luminosities ( M UV > − 15 , AB system), and are most pronounced for lower-luminosity galaxies. Intrinsic SEDs as well as those with interstellar medium absorption of galaxies with stripped stars and Population iii stars are found to be distinct for all tested Population iii IMFs. 
    more » « less