skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can magnetized turbulence set the mass scale of stars?
ABSTRACT Understanding the evolution of self-gravitating, isothermal, magnetized gas is crucial for star formation, as these physical processes have been postulated to set the initial mass function (IMF). We present a suite of isothermal magnetohydrodynamic (MHD) simulations using the gizmo code that follow the formation of individual stars in giant molecular clouds (GMCs), spanning a range of Mach numbers found in observed GMCs ($$\mathcal {M} \sim 10\!-\!50$$). As in past works, the mean and median stellar masses are sensitive to numerical resolution, because they are sensitive to low-mass stars that contribute a vanishing fraction of the overall stellar mass. The mass-weighted median stellar mass M50 becomes insensitive to resolution once turbulent fragmentation is well resolved. Without imposing Larson-like scaling laws, our simulations find $$M_\mathrm{50} \,\, \buildrel\propto \over \sim \,\,M_\mathrm{0} \mathcal {M}^{-3} \alpha _\mathrm{turb}\, \mathrm{SFE}^{1/3}$$ for GMC mass M0, sonic Mach number $$\mathcal {M}$$, virial parameter αturb, and star formation efficiency SFE = M⋆/M0. This fit agrees well with previous IMF results from the ramses, orion2, and sphng codes. Although M50 has no significant dependence on the magnetic field strength at the cloud scale, MHD is necessary to prevent a fragmentation cascade that results in non-convergent stellar masses. For initial conditions and SFE similar to star-forming GMCs in our Galaxy, we predict M50 to be $$\gt 20 \, \mathrm{M}_{\odot }$$, an order of magnitude larger than observed ($$\sim 2 \, \mathrm{M}_\odot$$), together with an excess of brown dwarfs. Moreover, M50 is sensitive to initial cloud properties and evolves strongly in time within a given cloud, predicting much larger IMF variations than are observationally allowed. We conclude that physics beyond MHD turbulence and gravity are necessary ingredients for the IMF.  more » « less
Award ID(s):
1748571
PAR ID:
10267917
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
496
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5072 to 5088
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The initial mass function (IMF) of stars is a key quantity affecting almost every field of astrophysics, yet it remains unclear what physical mechanisms determine it. We present the first runs of the STAR FORmation in Gaseous Environments project, using a new numerical framework to follow the formation of individual stars in giant molecular clouds (GMCs) using the gizmo code. Our suite includes runs with increasingly complex physics, starting with isothermal ideal magnetohydrodynamics (MHD) and then adding non-isothermal thermodynamics and protostellar outflows. We show that without protostellar outflows the resulting stellar masses are an order of magnitude too high, similar to the result in the base isothermal MHD run. Outflows disrupt the accretion flow around the protostar, allowing gas to fragment and additional stars to form, thereby lowering the mean stellar mass to a value similar to that observed. The effect of jets upon global cloud evolution is most pronounced for lower mass GMCs and dense clumps, so while jets can disrupt low-mass clouds, they are unable to regulate star formation in massive GMCs, as they would turn an order unity fraction of the mass into stars before unbinding the cloud. Jets are also unable to stop the runaway accretion of massive stars, which could ultimately lead to the formation of stars with masses $${\gt}500\, \mathrm{M}_{\rm \odot }$$. Although we find that the mass scale set by jets is insensitive to most cloud parameters (i.e. surface density, virial parameter), it is strongly dependent on the momentum loading of the jets (which is poorly constrained by observations) as well as the temperature of the parent cloud, which predicts slightly larger IMF variations than observed. We conclude that protostellar jets play a vital role in setting the mass scale of stars, but additional physics are necessary to reproduce the observed IMF. 
    more » « less
  2. null (Ed.)
    Abstract We present a large suite of MHD simulations of turbulent, star-forming giant molecular clouds (GMCs) with stellar feedback, extending previous work by simulating 10 different random realizations for each point in the parameter space of cloud mass and size. It is found that once the clouds disperse due to stellar feedback, both self-gravitating star clusters and unbound stars generally remain, which arise from the same underlying continuum of substructured stellar density, ie. the hierarchical cluster formation scenario. The fraction of stars that are born within gravitationally-bound star clusters is related to the overall cloud star formation efficiency set by stellar feedback, but has significant scatter due to stochastic variations in the small-scale details of the star-forming gas flow. We use our numerical results to calibrate a model for mapping the bulk properties (mass, size, and metallicity) of self-gravitating GMCs onto the star cluster populations they form, expressed statistically in terms of cloud-level distributions. Synthesizing cluster catalogues from an observed GMC catalogue in M83, we find that this model predicts initial star cluster masses and sizes that are in good agreement with observations, using only standard IMF and stellar evolution models as inputs for feedback. Within our model, the ratio of the strength of gravity to stellar feedback is the key parameter setting the masses of star clusters, and of the various feedback channels direct stellar radiation (photon momentum and photoionization) is the most important on GMC scales. 
    more » « less
  3. ABSTRACT Most observed stars are part of a multiple star system, but the formation of such systems and the role of environment and various physical processes is still poorly understood. We present a suite of radiation-magnetohydrodynamic simulations of star-forming molecular clouds from the STARFORGE project that include stellar feedback with varied initial surface density, magnetic fields, level of turbulence, metallicity, interstellar radiation field, simulation geometry and turbulent driving. In our fiducial cloud, the raw simulation data reproduces the observed multiplicity fractions for Solar-type and higher mass stars, similar to previous works. However, after correcting for observational incompleteness the simulation underpredicts these values. The discrepancy is likely due to the lack of disc fragmentation, as the simulation only resolves multiples that form either through capture or core fragmentation. The raw mass distribution of companions is consistent with randomly drawing from the initial mass function for the companions of $$\gt 1\, \mathrm{M}_{\rm \odot }$$ stars. However, accounting for observational incompleteness produces a flatter distribution similar to observations. We show that stellar multiplicity changes as the cloud evolves and anticorrelates with stellar density. This relationship also explains most multiplicity variations between runs, i.e. variations in the initial conditions that increase stellar density (increased surface density, reduced turbulence) also act to decrease multiplicity. While other parameters, such as metallicity, interstellar radiation, and geometry significantly affect the star formation history or the IMF, varying them produces no clear trend in stellar multiplicity properties. 
    more » « less
  4. ABSTRACT It has been established for decades that rotation curves deviate from the Newtonian gravity expectation given baryons alone below a characteristic acceleration scale $$g_{\dagger }\sim 10^{-8}\, \rm {cm\, s^{-2}}$$, a scale promoted to a new fundamental constant in MOND. In recent years, theoretical and observational studies have shown that the star formation efficiency (SFE) of dense gas scales with surface density, SFE ∼ Σ/Σcrit with $$\Sigma _{\rm crit} \sim \langle \dot{p}/m_{\ast }\rangle /(\pi \, G)\sim 1000\, \rm {M_{\odot }\, pc^{-2}}$$ (where $$\langle \dot{p}/m_{\ast }\rangle$$ is the momentum flux output by stellar feedback per unit stellar mass in a young stellar population). We argue that the SFE, more generally, should scale with the local gravitational acceleration, i.e. that SFE $${\sim}g_{\rm tot}/g_{\rm crit}\equiv (G\, M_{\rm tot}/R^{2}) / \langle \dot{p}/m_{\ast }\rangle$$, where Mtot is the total gravitating mass and $$g_{\rm crit}=\langle \dot{p}/m_{\ast }\rangle = \pi \, G\, \Sigma _{\rm crit} \approx 10^{-8}\, \rm {cm\, s^{-2}} \approx \mathit{ g}_{\dagger }$$. Hence, the observed g† may correspond to the characteristic acceleration scale above which stellar feedback cannot prevent efficient star formation, and baryons will eventually come to dominate. We further show how this may give rise to the observed acceleration scaling $$g_{\rm obs}\sim (g_{\rm baryon}\, g_{\dagger })^{1/2}$$ (where gbaryon is the acceleration due to baryons alone) and flat rotation curves. The derived characteristic acceleration g† can be expressed in terms of fundamental constants (gravitational constant, proton mass, and Thomson cross-section): $$g_{\dagger }\sim 0.1\, G\, m_{\mathrm{ p}}/\sigma _{\rm T}$$. 
    more » « less
  5. ABSTRACT We present and study a large suite of high-resolution cosmological zoom-in simulations, using the FIRE-2 treatment of mechanical and radiative feedback from massive stars, together with explicit treatment of magnetic fields, anisotropic conduction and viscosity (accounting for saturation and limitation by plasma instabilities at high β), and cosmic rays (CRs) injected in supernovae shocks (including anisotropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultrafaint dwarf ($$M_{\ast }\sim 10^{4}\, \mathrm{M}_{\odot }$$, $$M_{\rm halo}\sim 10^{9}\, \mathrm{M}_{\odot }$$) through Milky Way/Local Group (MW/LG) masses, systematically vary uncertain CR parameters (e.g. the diffusion coefficient κ and streaming velocity), and study a broad ensemble of galaxy properties [masses, star formation (SF) histories, mass profiles, phase structure, morphologies, etc.]. We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($$\gtrsim 1\,$$ pc) scales have only small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($$M_{\ast } \ll 10^{10}\, \mathrm{M}_{\odot }$$, $$M_{\rm halo} \lesssim 10^{11}\, \mathrm{M}_{\odot }$$), or at high redshifts (z ≳ 1–2), for any physically reasonable parameters. However, at higher masses ($$M_{\rm halo} \gtrsim 10^{11}\, \mathrm{M}_{\odot }$$) and z ≲ 1–2, CRs can suppress SF and stellar masses by factors ∼2–4, given reasonable injection efficiencies and relatively high effective diffusion coefficients $$\kappa \gtrsim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$$. At lower κ, CRs take too long to escape dense star-forming gas and lose their energy to collisional hadronic losses, producing negligible effects on galaxies and violating empirical constraints from spallation and γ-ray emission. At much higher κ CRs escape too efficiently to have appreciable effects even in the CGM. But around $$\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$$, CRs escape the galaxy and build up a CR-pressure-dominated halo which maintains approximate virial equilibrium and supports relatively dense, cool (T ≪ 106 K) gas that would otherwise rain on to the galaxy. CR ‘heating’ (from collisional and streaming losses) is never dominant. 
    more » « less