skip to main content


Title: Hands-On Statics to Improve Conceptual Understanding and Representational Competence
Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models. The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models.  more » « less
Award ID(s):
1834417
NSF-PAR ID:
10384599
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings ASEE annual conference
ISSN:
0190-1052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students’ development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models. The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models. 
    more » « less
  2. In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineering statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonly employed in statics. Each question requires the student to interpret and/or use two or more different representations of vectors and requires no calculation beyond single digit integer arithmetic. Distractor answer choices include common student mistakes and misconceptions drawn from the literature and from our teaching experience. We piloted these twelve questions as a timed section of the first exam in fall 2018 statics courses at both Whatcom Community College (WCC) and Western Washington University. Analysis of students’ unprompted use of vector representations on the open-ended problem-solving section of the same exam provides evidence of the assessment’s validity as a measurement instrument for representational competence. We found a positive correlation between students’ accurate and effective use of representations and their score on the multiple choice test. We gathered additional validity evidence by reviewing student responses on an exam wrapper reflection. We used item difficulty and item discrimination scores (point-biserial correlation) to eliminate two questions and revised the remaining questions to improve clarity and discriminatory power. We administered the revised version in two contexts: (1) again as part of the first exam in the winter 2019 Statics course at WCC, and (2) as an extra credit opportunity for statics students at Utah State University. This paper includes sample questions from the assessment to illustrate the approach. The full assessment is available to interested instructors and researchers through an online tool. 
    more » « less
  3. In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineering statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonly employed in statics. Each question requires the student to interpret and/or use two or more different representations of vectors and requires no calculation beyond single digit integer arithmetic. Distractor answer choices include common student mistakes and misconceptions drawn from the literature and from our teaching experience. We piloted these twelve questions as a timed section of the first exam in fall 2018 statics courses at both Whatcom Community College (WCC) and Western Washington University. Analysis of students’ unprompted use of vector representations on the open-ended problem-solving section of the same exam provides evidence of the assessment’s validity as a measurement instrument for representational competence. We found a positive correlation between students’ accurate and effective use of representations and their score on the multiple choice test. We gathered additional validity evidence by reviewing student responses on an exam wrapper reflection. We used item difficulty and item discrimination scores (point-biserial correlation) to eliminate two questions and revised the remaining questions to improve clarity and discriminatory power. We administered the revised version in two contexts: (1) again as part of the first exam in the winter 2019 Statics course at WCC, and (2) as an extra credit opportunity for statics students at Utah State University. This paper includes sample questions from the assessment to illustrate the approach. The full assessment is available to interested instructors and researchers through an online tool. 
    more » « less
  4. This work in progress paper describes ongoing work to understand the ways in which students make use of manipulatives to develop their representational competence and deepen their conceptual understanding of course content. Representational competence refers to the fluency with which a subject expert can move between different representations of a concept (e.g. mathematical, symbolic, graphical, 2D vs. 3D, pictorial) as appropriate for communication, reasoning, and problem solving. Several hands-on activities for engineering statics have been designed and implemented in face-to-face courses since fall 2016. In the transition to online learning in response to the COVID 19 pandemic, modeling kits were sent home to students so they could work on the activities at their own pace and complete the associated worksheets. An assignment following the vector activities required students to create videotaped or written reflections with annotated pictures using the models to explain their thinking around key concepts. Students made connections between abstract symbolic representations and their physical models to explain concepts such as a general 3D unit vector, the difference between spherical coordinate angles and coordinate direction angles, and the meaning of decomposing a vector into components perpendicular and parallel to a line. Thematic analysis of the video and written data was used to develop codes and identify themes in students’ use of the models as it relates to developing representational competence. The student submissions also informed the design of think-aloud exercises in one-on-one semi-structured interviews between researchers and students that are currently in progress. This paper presents initial work analyzing and discussing themes that emerged from the initial video and written analysis and plans for the subsequent think-aloud interviews, all focused on the specific attributes of the models that students use to make sense of course concepts. The ultimate goal of this work is to develop some general guidelines for the design of manipulatives to support student learning in a variety of STEM topics. 
    more » « less
  5. This work in progress paper describes ongoing work to understand the ways in which students make use of manipulatives to develop their representational competence and deepen their conceptual understanding of course content. Representational competence refers to the fluency with which a subject expert can move between different representations of a concept (e.g. mathematical, symbolic, graphical, 2D vs. 3D, pictorial) as appropriate for communication, reasoning, and problem solving. Several hands-on activities for engineering statics have been designed and implemented in face-to-face courses since fall 2016. In the transition to online learning in response to the COVID 19 pandemic, modeling kits were sent home to students so they could work on the activities at their own pace and complete the associated worksheets. An assignment following the vector activities required students to create videotaped or written reflections with annotated pictures using the models to explain their thinking around key concepts. Students made connections between abstract symbolic representations and their physical models to explain concepts such as a general 3D unit vector, the difference between spherical coordinate angles and coordinate direction angles, and the meaning of decomposing a vector into components perpendicular and parallel to a line. Thematic analysis of the video and written data was used to develop codes and identify themes in students’ use of the models as it relates to developing representational competence. The student submissions also informed the design of think-aloud exercises in one-on-one semi-structured interviews between researchers and students that are currently in progress. This paper presents initial work analyzing and discussing themes that emerged from the initial video and written analysis and plans for the subsequent think-aloud interviews, all focused on the specific attributes of the models that students use to make sense of course concepts. The ultimate goal of this work is to develop some general guidelines for the design of manipulatives to support student learning in a variety of STEM topics. 
    more » « less