An unprecedented intramolecular [4 + 2] tetrazine-olefin cycloaddition with α,β-unsaturated substrates was discovered. The reaction produces unique coumarin-dihydropyridazine heterocycles that exhibited strong fluorescence with large Stokes shifts and excellent photo- and pH-stability. This property can be used for reaction analysis. The rate of cycloaddition was found to be solvent dependent and was determined using experimental data with a kinetic modeling software (COPASI) as well as DFT calculations ( k 1 = 0.64 ± 0.019 s −1 and 4.1 s −1 , respectively). The effects of steric and electronic properties of both the tetrazine and α,β-unsaturated carbonyl on the reaction were studied and followed the known trends characteristic of the intermolecular reaction. Based on these results, we developed a “release-then-click” strategy for the ROS triggered release of methylselenenic acid (MeSeOH) and a fluorescent tracer. This strategy was demonstrated in HeLa cells via fluorescence imaging. 
                        more » 
                        « less   
                    
                            
                            Mechanistic Aspects on [3+2] Cycloaddition (32CA) Reactions of Azides to Nitroolefins: A Computational and Kinetic Study
                        
                    
    
            Abstract [3+2] cycloadditions of nitroolefins have emerged as a selective and catalyst‐free alternative for the synthesis of 1,2,3‐triazoles from azides. We describe mechanistic studies into the cycloaddition/rearomatization reaction sequence. DFT calculations revealed a rate‐limiting cycloaddition step proceeding via an asynchronous TS with high kinetic selectivity for the 1,5‐triazole. Kinetic studies reveal a second‐order rate law, and13C kinetic isotopic effects at natural abundance were measured with a significant normal effect at the conjugated olefinic centers of 1.0158 and 1.0216 at the α and β‐carbons of β‐nitrostyrene. Distortion/interaction‐activation strain and energy decomposition analyses revealed that the major regioisomeric pathway benefits from an earlier and less‐distorted TS, while intermolecular interaction terms dominate the preference for 1,5‐ over 1,4‐cycloadducts. In addition, the major regioisomer also has more favorable electrostatic and dispersion terms. Additionally, while static DFT calculations suggest a concerted but highly asynchronousEi‐type HNO2elimination mechanism, quasiclassical direct‐dynamics calculations reveal the existence of a dynamic intermediate. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1955876
- PAR ID:
- 10384872
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 28
- Issue:
- 69
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Here, we used a combination of laser‐induced experiments and density functional theory (DFT) calculations to study the mechanism of growth of carbonaceous species on the Mg surface. Experimental observations revealed that the carbon deposit forms upon laser illumination on the Mg surface, with the deposit being clearer and better structured in the presence of 1,3‐butadiene (C4H6) compared to ethylene (C2H4) gas. DFT thermodynamic and kinetic calculations of C2−C4hydrocarbons interaction on low‐index Mg(0001) were used to explain this experimental observation. Our results on Mg(0001) showed that the cis isomer of C4H6binds more strongly than its trans isomer via a [4+2] cycloaddition mechanism. We also investigated the adsorption of two units of C2H4and C4H6molecules, as well as the subsequent dehydrogenation stages that produce radical species responsible for chain growth mechanisms. The results showed that free energy change of dehydrogenation of two units of cis‐C4H6[i. e. cis‐C8H12] is lower than the dehydrogenation of trans conformer of C4H6and C2H4molecule, indicating that the dehydrogenation of two units of cis‐C4H6facilitates the initiation of growth of carbonaceous species on Mg surfaces. Therefore, the DFT calculations pinpoint the origin of the experimental observation of clearer carbon deposits on the Mg surface.more » « less
- 
            Abstract We report the first conductance measurements of [n]staffane (bicyclopentane) oligomers in single‐molecule junctions. Our studies reveal two quantum transport characteristics unique to staffanes that emerge from their strained bicyclic structure. First, though staffanes are composed of weakly conjugated C−Cσ‐bonds, staffanes carry a shallower conductance decay value (β=0.84±0.02 n−1) than alkane chain analogs (β=0.96±0.03 n−1) when measured with the scanning tunneling microscopy break junction (STM‐BJ) technique. Staffanes are thus more conductive than otherσ‐bonded organic backbones reported in the literature on a per atom basis. Density functional theory (DFT) calculations suggest staffane backbones are more effective conduits for charge transport because their significant bicyclic ring strain destabilizes the HOMO‐2 energy, aligning it more closely with the Fermi energy of gold electrodes as oligomer order increases. Second, the monostaffane is significantly lower conducting than expected. DFT calculations suggest that short monostaffanes sterically enforce insulating gauche interelectrode orientations over syn orientations; these steric effects are alleviated in longer staffanes. Moreover, we find that [2‐5]staffane wires may accommodate axial mechanical strain by “rod‐bending”. These findings show for the first time how bicyclic ring strain can enhance charge transmission in saturated molecular wires. These studies showcase the STM‐BJ technique as a valuable tool for uncovering the stereoelectronic proclivities of molecules at material interfaces.more » « less
- 
            The oxidation of cycloalkanes is important in the combustion of transportation fuels and in atmospheric secondary organic aerosol formation. A transient carbon-centered radical intermediate (•QOOH) in the oxidation of cyclohexane is identified through its infrared fingerprint and time- and energy-resolved unimolecular dissociation dynamics to hydroxyl (OH) radical and bicyclic ether products. Although the cyclohexyl ring structure leads to three nearly degenerate •QOOH isomers (β-, γ-, and δ-QOOH), their transition state (TS) barriers to OH products are predicted to differ considerably. Selective characterization of the β-QOOH isomer is achieved at excitation energies associated with the lowest TS barrier, resulting in rapid unimolecular decay to OH products that are detected. A benchmarking approach is employed for the calculation of high-accuracy stationary point energies, in particular TS barriers, for cyclohexane oxidation (C6H11O2), building on higher-level reference calculations for the smaller ethane oxidation (C2H5O2) system. The isomer-specific characterization of β-QOOH is validated by comparison of experimental OH product appearance rates with computed statistical microcanonical rates, including significant heavy-atom tunneling, at energies in the vicinity of the TS barrier. Master-equation modeling is utilized to extend the results to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclohexane combustion.more » « less
- 
            Abstract Structures at serine‐proline sites in proteins were analyzed using a combination of peptide synthesis with structural methods and bioinformatics analysis of the PDB. Dipeptides were synthesized with the proline derivative (2S,4S)‐(4‐iodophenyl)hydroxyproline [hyp(4‐I‐Ph)]. The crystal structure of Boc‐Ser‐hyp(4‐I‐Ph)‐OMe had two molecules in the unit cell. One molecule exhibitedcis‐proline and a type VIa2 β‐turn (BcisD). Thecis‐proline conformation was stabilized by a C–H/O interaction between Pro C–Hαand the Ser side‐chain oxygen. NMR data were consistent with stabilization ofcis‐proline by a C–H/O interaction in solution. The other crystallographically observed molecule hadtrans‐Pro and both residues in the PPII conformation. Two conformations were observed in the crystal structure of Ac‐Ser‐hyp(4‐I‐Ph)‐OMe, with Ser adopting PPII in one and the β conformation in the other, each with Pro in the δ conformation andtrans‐Pro. Structures at Ser‐Pro sequences were further examined via bioinformatics analysis of the PDB and via DFT calculations. Ser‐Pro versus Ala–Pro sequences were compared to identify bases for Ser stabilization of local structures. C–H/O interactions between the Ser side‐chain Oγand Pro C–Hαwere observed in 45% of structures with Ser‐cis‐Pro in the PDB, with nearly all Ser‐cis‐Pro structures adopting a type VI β‐turn. 53% of Ser‐trans‐Pro sequences exhibited main‐chain COi•••HNi+3or COi•••HNi+4hydrogen bonds, with Ser as theiresidue and Pro as thei + 1 residue. These structures were overwhelmingly either type I β‐turns or N‐terminal capping motifs on α‐helices or 310‐helices. These results indicate that Ser‐Pro sequences are particularly potent in favoring these structures. In each, Ser is in either the PPII or β conformation, with the Ser Oγcapable of engaging in a hydrogen bond with the amide N–H of thei + 2 (type I β‐turn or 310‐helix; Serχ1t) ori + 3 (α‐helix; Serχ1g+) residue. Non‐prolinecisamide bonds can also be stabilized by C–H/O interactions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
