skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single‐Molecule Conductance of Staffanes
Abstract We report the first conductance measurements of [n]staffane (bicyclopentane) oligomers in single‐molecule junctions. Our studies reveal two quantum transport characteristics unique to staffanes that emerge from their strained bicyclic structure. First, though staffanes are composed of weakly conjugated C−Cσ‐bonds, staffanes carry a shallower conductance decay value (β=0.84±0.02 n−1) than alkane chain analogs (β=0.96±0.03 n−1) when measured with the scanning tunneling microscopy break junction (STM‐BJ) technique. Staffanes are thus more conductive than otherσ‐bonded organic backbones reported in the literature on a per atom basis. Density functional theory (DFT) calculations suggest staffane backbones are more effective conduits for charge transport because their significant bicyclic ring strain destabilizes the HOMO‐2 energy, aligning it more closely with the Fermi energy of gold electrodes as oligomer order increases. Second, the monostaffane is significantly lower conducting than expected. DFT calculations suggest that short monostaffanes sterically enforce insulating gauche interelectrode orientations over syn orientations; these steric effects are alleviated in longer staffanes. Moreover, we find that [2‐5]staffane wires may accommodate axial mechanical strain by “rod‐bending”. These findings show for the first time how bicyclic ring strain can enhance charge transmission in saturated molecular wires. These studies showcase the STM‐BJ technique as a valuable tool for uncovering the stereoelectronic proclivities of molecules at material interfaces.  more » « less
Award ID(s):
2340979
PAR ID:
10554224
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
4
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Designing highly insulating sub-nanometer molecules is difficult because tunneling conductance increases exponentially with decreasing molecular length. This challenge is further enhanced by the fact that most molecules cannot achieve full conductance suppression with destructive quantum interference. Here, we present results for a series of small saturated heterocyclic alkanes where we show that conductance is suppressed due to destructive interference. Using the STM-BJ technique and density functional theory calculations, we confirm that their single-molecule junction conductance is lower than analogous alkanes of similar length. We rationalize the suppression of conductance in the junctions through analysis of the computed ballistic current density. We find there are highly symmetric ring currents, which reverse direction at the antiresonance in the Landauer transmission near the Fermi energy. This pattern has not been seen in earlier studies of larger bicyclic systems exhibiting interference effects and constitutes clear-cut evidence of destructive σ-interference. The finding of heterocyclic alkanes with destructive quantum interference charts a pathway for chemical design of short molecular insulators using organic molecules. 
    more » « less
  2. We demonstrate that imidazole based π–π stacked dimers form strong and efficient conductance pathways in single-molecule junctions using the scanning-tunneling microscope-break junction (STM-BJ) technique and density functional theory-based calculations. We first characterize an imidazole-gold contact by measuring the conductance of imidazolyl-terminated alkanes ( im-N-im , N = 3–6). We show that the conductance of these alkanes decays exponentially with increasing length, indicating that the mechanism for electron transport is through tunneling or super-exchange. We also reveal that π–π stacked dimers can be formed between imidazoles and have better coupling than through-bond tunneling. These experimental results are rationalized by calculations of molecular junction transmission using non-equilibrium Green's function formalism. This study verifies the capability of imidazole as a Au-binding ligand to form stable single- and π-stacked molecule junctions at room temperature. 
    more » « less
  3. Abstract [3+2] cycloadditions of nitroolefins have emerged as a selective and catalyst‐free alternative for the synthesis of 1,2,3‐triazoles from azides. We describe mechanistic studies into the cycloaddition/rearomatization reaction sequence. DFT calculations revealed a rate‐limiting cycloaddition step proceeding via an asynchronous TS with high kinetic selectivity for the 1,5‐triazole. Kinetic studies reveal a second‐order rate law, and13C kinetic isotopic effects at natural abundance were measured with a significant normal effect at the conjugated olefinic centers of 1.0158 and 1.0216 at the α and β‐carbons of β‐nitrostyrene. Distortion/interaction‐activation strain and energy decomposition analyses revealed that the major regioisomeric pathway benefits from an earlier and less‐distorted TS, while intermolecular interaction terms dominate the preference for 1,5‐ over 1,4‐cycloadducts. In addition, the major regioisomer also has more favorable electrostatic and dispersion terms. Additionally, while static DFT calculations suggest a concerted but highly asynchronousEi‐type HNO2elimination mechanism, quasiclassical direct‐dynamics calculations reveal the existence of a dynamic intermediate. 
    more » « less
  4. Abstract In a high‐resolution photoelectron imaging and theoretical study of the IrB3cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3ring with a bridge‐bonded Ir atom (Cs,2A′), and the second isomer features a tetrahedral structure (C3v,2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutralC3visomer involves significant covalent Ir−B bonding and weak ionic bonding with charge transfer from B3to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ring coordinated to a transition metal. 
    more » « less
  5. As the field of fluid dynamics progresses, the demand for sophisticated diagnostic methods to accurately assess flow conditions rises. In this work, resonantly ionized photoemission thermometry (RIPT) has been used to directly target and ionize diatomic nitrogen (N2) to measure one-dimensional (1D) temperature profiles in a supersonic jet flow. This technique can be considered non-intrusive as the premise uses resonantly enhanced multiphoton ionization (REMPI) to target molecular nitrogen. This resonance excites N2into absorption bands of the P, Q, and R rotational branches of N2(b1Πu). The ideal (3 + 1) REMPI scheme excites from the ground state and ionizes N2(b1Πu←X1Σg+) where de-excitation results in photoemission from the first negative band of ionizedN2+(B2Σu+→X2Σg+) as nitrogen returns to the ground state. The resulting emission can be observed using an intensified camera, thus permitting inference of the rotational temperature of ground-state molecular nitrogen. A linearly regressive Boltzmann distribution is applied based on previous calibration data for this technique to quantify the temperature along the ionized line. This work applies this technique to a pure N2supersonic jet in cross-flow and counter-flow orientations to demonstrate N2RIPT’s applications in a supersonic flow. Temperature variations are observed at different locations downstream of the exit in cross-flow, and axisymmetric in counter-flow, to generate profiles characterizing the flow dynamics. Due to the collisional effects resulting from the number density of N2at higher pressures, a (3 + 2) REMPI scheme is observed throughout this text. 
    more » « less