Bacterial contamination in food-processing facilities is a critical issue that leads to outbreaks compromising the integrity of the food supply and public health. We developed a label-free and rapid electrochemical biosensor for Listeria monocytogenes detection using a new one-step simultaneous sonoelectrodeposition of platinum and chitosan (CHI/Pt) to create a biomimetic nanostructure that actuates under pH changes. The XPS analysis shows the effective co-deposition of chitosan and platinum on the electrode surface. This deposition was optimized to enhance the electroactive surface area by 11 times compared with a bare platinum–iridium electrode (p < 0.05). Electrochemical behavior during chitosan actuation (pH-stimulated osmotic swelling) was characterized with three different redox probes (positive, neutral, and negative charge) above and below the isoelectric point of chitosan. These results showed that using a negatively charged redox probe led to the highest electroactive surface area, corroborating previous studies of stimulus–response polymers on metal electrodes. Following this material characterization, CHI/Pt brushes were functionalized with aptamers selective for L. monocytogenes capture. These aptasensors were functional at concentrations up to 106 CFU/mL with no preconcentration nor extraneous reagent addition. Selectivity was assessed in the presence of other Gram-positive bacteria (Staphylococcus aureus) and with a food product (chicken broth). Actuation led to improved L. monocytogenes detection with a low limit of detection (33 CFU/10 mL in chicken broth). The aptasensor developed herein offers a simple fabrication procedure with only one-step deposition followed by functionalization and rapid L. monocytogenes detection, with 15 min bacteria capture and 2 min sensing.
more »
« less
Rapid and label-free Listeria monocytogenes detection based on stimuli-responsive alginate-platinum thiomer nanobrushes
Abstract In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detectListeria monocytogenesusing a novel stimulus–response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers (ALG-thiomer). ALG-thiomer/Pt nanobrush platform significantly increased the average electroactive surface area of electrodes by 7 folds and maintained the actuation properties (pH-stimulated osmotic swelling) of the alginate. Dielectric behavior during brush actuation was characterized with positively, neutral, and negatively charged redox probes above and below the isoelectric point of alginate, indicating ALG-thiomer surface charge plays an important role in signal acquisition. The ALG-thiomer platform was biofunctionalized with an aptamer selective for the internalin A protein onListeriafor biosensing applications. Aptamer loading was optimized and various cell capture strategies were investigated (brush extended versus collapsed). Maximum cell capture occurs when the ALG-thiomer/aptamer is in the extended conformation (pH > 3.5), followed by impedance measurement in the collapsed conformation (pH < 3.5). Low concentrations of bacteria (5 CFU mL−1) were sensed from a complex food matrix (chicken broth) and selectivity testing against other Gram-positive bacteria (Staphylococcus aureus) indicate the aptamer affinity is maintained, even at these pH values. The new hybrid soft material is among the most efficient and fastest (17 min) forL. monocytogenesbiosensing to date, and does not require sample pretreatment, constituting a promising new material platform for sensing small molecules or cells.
more »
« less
- Award ID(s):
- 1805512
- PAR ID:
- 10384906
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dudley, Edward G. (Ed.)ABSTRACT Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes . Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages. IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes . This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes . This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy.more » « less
-
Abstract Staphylococcus aureus(S. aureus), a common foodborne pathogen, poses significant public health challenges due to its association with various infectious diseases. A key player in its pathogenicity, which is the IsdA protein, is an essential virulence factor inS. aureusinfections. In this work, we present an integrated in‐silico and experimental approach using MD simulations and surface plasmon resonance (SPR)‐based aptasensing measurements to investigateS. aureusbiorecognition via IsdA surface protein binding. SPR, a powerful real‐time and label‐free technique, was utilized to characterize interaction dynamics between the aptamer and IsdA protein, and MD simulations was used to characterize the stable and dynamic binding regions. By characterizing and optimizing pivotal parameters such as aptamer concentration and buffer conditions, we determined the aptamer's binding performance. Under optimal conditions of pH 7.4 and 150 mM NaCl concentration, the kinetic parameters were determined;ka = 3.789 × 104/Ms,kd = 1.798 × 103/s, andKD = 4.745 × 10−8 M. The simulations revealed regions of interest in the IsdA‐aptamer complex. Region I, which includes interactions between amino acid residues H106 and R107 and nucleotide residues 9G, 10U, 11G and 12U of the aptamer, had the strongest interaction, based on ΔG and B‐factor values, and hence contributed the most to the stability of the interaction. Region II, which covers residue 37A reflects the dynamic nature of the interaction due to frequent contacts. The approach presents a rigorous characterization of aptamer‐IsdA binding behavior, supporting the potential application of the IsdA‐binding aptamer system forS. aureusbiosensing.more » « less
-
Abstract This study investigates the antimicrobial effectiveness of 405 nm light emitting diodes (LEDs) against pathogenicEscherichia coliO157:H7,Listeria monocytogenes,Pseudomonas aeruginosa,SalmonellaTyphimurium, andStaphylococcus aureus, in thin liquid films (TLF) and on solid surfaces. Stainless steel (SS), high density polyethylene (HDPE), low density polyethylene (LDPE), and borosilicate glass were used as materials typically encountered in food processing, food service, and clinical environments. Anodic aluminum oxide (AAO) coupons with nanoscale topography were used, to evaluate the effect of topography on inactivation. The impact of surface roughness, hydrophobicity, and reflectivity on inactivation was assessed. A 48 h exposure to 405 nm led to reductions ranging from 1.3 (E. coli) to 5.7 (S. aureus) log CFU in TLF and 3.1 to 6.3 log CFU on different solid contact surfaces and packaging materials. All inactivation curves were nonlinear and followed Weibull kinetics, with better inactivation predictions on surfaces (0.89 ≤ R2 ≤ 1.0) compared to TLF (0.76 ≤ R2 ≤ 0.99). The fastest inactivation rate was observed on small nanopore AAO coupons inoculated withL. monocytogenesandS. aureus, indicating inactivation enhancing potential of these surfaces. These results demonstrate significant promise of 405 nm LEDs for antimicrobial applications in food processing and handling and the healthcare industry.more » « less
-
Abstract BACKGROUNDHaematococcus pluvialis(Hp), a freshwater chlorophyte microalga, is a major natural source of astaxanthin (ASX), a potent antioxidant with anti‐inflammatory, anticarcinogenic and muscle pigmentation properties. However,ASXbioavailability is limited by the rigid cyst wall and, although cell wall rupture improves bioavailability, the free form is unstable under high temperatures,pHextremes, light or oxygen. Encapsulation techniques improveASXstability, making it suitable for functional foods and aquaculture, especially in salmonid feeds where natural pigments are preferred. The present study evaluates the stability of weakenedHp(Hpw) biomass encapsulated in alginate (ALG) via ionic gelation. RESULTSEncapsulation utilizingALGachieved high efficiency (97 ± 2.63%) and loading capacity (32 ± 0.90%), confirming its suitability as a wall material.ALG‐Hpwhydrogels displayed significant color intensity, enhancing potential feed or food hues. Low bulk density (0.59 ± 0.01 g cm−3), moisture content (11.97 ± 0.20%) and water activity (0.28 ± 0.00) suggest minimized oxidation processes. Hydrogels measured 1.30 ± 0.06 mm with a uniform sphericity factor of 0.058 ± 0.03. Confocal laser scanning microscopy confirmed uniformHpwdistribution andscanning electron microscopyrevealed fissure‐free surfaces, ensuring minimal permeability. DPPH (i.e. 2,2‐diphenyl‐1‐picrylhydrazyl) scavenging activity was similar betweenHpwextract (38.32 ± 2.30% to 96.32 ± 0.88%) andALG‐Hpwhydrogels (33.20 ± 1.55% to 93.30 ± 0.44%).ALGIncreasedHpwdecomposition temperature by 40.97 °C. Encapsulation ofHpwinALGsignificantly enhanced the bioaccessibility ofASX. TheALG‐based encapsulation effectively preservedASXstability, retaining over 90% of its content under storage conditions. CONCLUSIONALGis a suitable biopolymer for encapsulatingHpw, preserving antioxidant activity, and enhancing thermal properties, making it valuable for broader applications. © 2025 Society of Chemical Industry.more » « less
An official website of the United States government
