skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smart Home Privacy Policies Demystified: A Study of Availability, Content, and Coverage
Smart home devices transmit highly sensitive usage information to servers owned by vendors or third-parties as part of their core functionality. Hence, it is necessary to provide users with the context in which their device data is collected and shared, to enable them to weigh the benefits of deploying smart home technology against the resulting loss of privacy. As privacy policies are generally expected to precisely convey this information, we perform a systematic and data-driven analysis of the current state of smart home privacy policies, with a particular focus on three key questions: (1) how hard privacy policies are for consumers to obtain, (2) how existing policies describe the collection and sharing of device data, and (3) how accurate these descriptions are when compared to information derived from alternate sources. Our analysis of 596 smart home vendors, affecting 2, 442 smart home devices yields 17 findings that impact millions of users, demonstrate gaps in existing smart home privacy policies, as well as challenges and opportunities for automated analysis.  more » « less
Award ID(s):
2132285 2414176
PAR ID:
10384942
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
31st USENIX Security Symposium (USENIX Security 22)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Smart home devices are constantly exchanging data with a variety of remote endpoints. This data encompasses diverse information, from device operation and status to sensitive user information like behavioral usage patterns. However, there is a lack of transparency regarding where such data goes and with whom it is potentially shared. This paper investigates the diverse endpoints that smart home Internet-of-Things (IoT) devices contact to better understand and reason about the IoT backend infrastructure, thereby providing insights into potential data privacy risks. We analyze data from 5,413 users and 25,123 IoT devices using the IoT Inspector, an open-source application allowing users to monitor traffic from smart home devices on their networks. First, we develop semi-automated techniques to map remote endpoints to organizations and their business types to shed light on their potential relationships with IoT end products. We discover that IoT devices contact more third or support-party domains than first-party domains. We also see that the distribution of contacted endpoints varies based on the user's location and across vendors manufacturing similar functional devices, where some devices are more exposed to third parties than others. Our analysis also reveals the major organizations providing backend support for IoT smart devices and provides insights into the temporal evolution of cross-border data-sharing practices. 
    more » « less
  2. With the increasing adoption of smart home devices, users rely on device automation to control their homes. This automation commonly comes in the form of smart home routines, an abstraction available via major vendors. Yet, questions remain about how a system should best handle conflicts in which different routines access the same devices simultaneously. In particular---among the myriad ways a smart home system could handle conflicts, which of them are currently utilized by existing systems, and which ones result in the highest user satisfaction? We investigate the first question via a survey of existing literature and find a set of conditions, modifications, and system strategies related to handling conflicts. We answer the second question via a scenario-based Mechanical-Turk survey of users interested in owning smart home devices and current smart home device owners (N=197). We find that: (i) there is no context-agnostic strategy that always results in high user satisfaction, and (ii) users' personal values frequently form the basis for shaping their expectations of how routines should execute. 
    more » « less
  3. Users face various privacy risks in smart homes, yet there are limited ways for them to learn about the details of such risks, such as the data practices of smart home devices and their data flow. In this paper, we present Privacy Plumber, a system that enables a user to inspect and explore the privacy "leaks" in their home using an augmented reality tool. Privacy Plumber allows the user to learn and understand the volume of data leaving the home and how that data may affect a user's privacy -- in the same physical context as the devices in question, because we visualize the privacy leaks with augmented reality. Privacy Plumber uses ARP spoofing to gather aggregate network traffic information and presents it through an overlay on top of the device in an smartphone app. The increased transparency aims to help the user make privacy decisions and mend potential privacy leaks, such as instruct Privacy Plumber on what devices to block, on what schedule (i.e., turn off Alexa when sleeping), etc. Our initial user study with six participants demonstrates participants' increased awareness of privacy leaks in smart devices, which further contributes to their privacy decisions (e.g., which devices to block). 
    more » « less
  4. In the smart home landscape, there is an increasing trend of homeowners sharing device access outside their homes. This practice presents unique challenges in terms of security and privacy. In this study, we evaluated the co-management features in smart home management systems to investigate 1) how homeowners establish and authenticate shared users’ access, 2) the access control mechanisms, and 3) the management, monitoring, and revocation of access for shared devices. We conducted a systematic feature analysis of 11 Android and iOS mobile applications (“apps”) and 2 open-source platforms designed for smart home management. Our study revealed that most smart home systems adopt a centralized control model which necessitates shared users to utilize the primary app for device access, while providing diverse sharing mechanisms, such as email or phone invitations and unique codes, each presenting distinct security and privacy advantages. Moreover, we discovered a variety of access control options, ranging from full access to granular access control such as time-based restrictions which, while enhancing security and convenience, necessitate careful management to avoid user confusion. Additionally, our findings highlighted the prevalence of comprehensive methods for monitoring shared users’ access, with most systems providing detailed logs for added transparency and security, although there are some restrictions to safeguard homeowner privacy. Based on our findings, we recommend enhanced access control features to improve user experience in shared settings. 
    more » « less
  5. This report will discuss and analyze the risks and challenges associated with smart home devices, focusing on vulnerabilities in commonly used products such as smart speakers, security cameras, thermostats, and lighting systems. As the adoption of smart home security grows globally, it has become clear that many users remain unaware of the associated security risks, leading to data breaches and potential privacy violations. This research evaluates the security features of these devices, the frequency of breaches, and common vulnerabilities. Using a mixed-methods approach—including a user survey, analysis of past cybersecurity incidents, and a detailed review of existing literature—this study assesses the current state of smart home device security. The findings aim to highlight gaps in user awareness, evaluate manufacturers’ protective measures, and provide recommendations for improving cybersecurity practices in smart home environments. 
    more » « less