Abstract Shifting baselines in the Arctic atmosphere‐sea ice‐ocean system have significant potential to alter biogeochemical cycling and ecosystem dynamics. In particular, the impact of increased open water duration on lower trophic level productivity and biological CO2sequestration is poorly understood. Using high‐resolution observations of surface seawater dissolved O2/Ar andpCO2collected in the Pacific Arctic in October 2011 and 2012, we evaluate spatial variability in biological metabolic status (autotrophy vs heterotrophy) as constrained by O2/Ar saturation (∆O2/Ar) as well as the relationship between net biological production and the sea‐air gradient ofpCO2(∆pCO2). We find a robust relationship between∆pCO2and∆O2/Ar(correlation coefficient of −0.74 and −0.61 for 2011 and 2012, respectively), which suggests that biological production in the late open water season is an important determinant of the air‐sea CO2gradient at a timeframe of maximal ocean uptake for CO2in this region. Patchiness in biological production as indicated by∆O2/Arsuggests spatially variable nutrient supply mechanisms supporting late season growth amidst a generally strongly stratified and nutrient‐limited condition. 
                        more » 
                        « less   
                    
                            
                            Summertime Evolution of Net Community Production and CO 2 Flux in the Western Arctic Ocean
                        
                    
    
            Abstract To examine seasonal and regional variabilities in metabolic status and the coupling of net community production (NCP) and air‐sea CO2fluxes in the western Arctic Ocean, we collected underway measurements of surface O2/Ar and partial pressure of CO2(pCO2) in the summers of 2016 and 2018. With a box‐model, we demonstrate that accounting for local sea ice history (in addition to wind history) is important in estimating NCP from biological oxygen saturation (Δ(O2/Ar)) in polar regions. Incorporating this sea ice history correction, we found that most of the western Arctic exhibited positive Δ(O2/Ar) and negativepCO2saturation, Δ(pCO2), indicative of net autotrophy but with the relationship between the two parameters varying regionally. In the heavy ice‐covered areas, where air‐sea gas exchange was suppressed, even minor NCP resulted in relatively high Δ(O2/Ar) and lowpCO2in water due to limited gas exchange. Within the marginal ice zone, NCP and CO2flux magnitudes were strongly inversely correlated, suggesting an air to sea CO2flux induced primarily by biological CO2removal from surface waters. Within ice‐free waters, the coupling of NCP and CO2flux varied according to nutrient supply. In the oligotrophic Canada Basin, NCP and CO2flux were both small, controlled mainly by air‐sea gas exchange. On the nutrient‐rich Chukchi Shelf, NCP was strong, resulting in great O2release and CO2uptake. This regional overview of NCP and CO2flux in the western Arctic Ocean, in its various stages of ice‐melt and nutrient status, provides useful insight into the possible biogeochemical evolution of rapidly changing polar oceans. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1926158
- PAR ID:
- 10384996
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 35
- Issue:
- 3
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Analysis of dissolved oxygen (O2) in the Arctic's surface ocean provides insights into gas transfer between the atmosphere‐ice‐ocean system, water mass dynamics, and biogeochemical processes. In the Arctic Ocean's Canada Basin mixed layer, higher O2concentrations are generally observed under sea ice compared to open water regions. Annual cycles of O2and O2saturation, increasing from summer through spring and then sharply declining to late summer, are tightly linked to sea ice cover. The primary fluxes that influence seasonal variability of O2are modeled and compared to Ice‐Tethered Profiler O2observations to understand the relative role of each flux in the annual cycle. Findings suggest that sea ice melt/growth dominates seasonal variations in mixed layer O2, with minor contributions from vertical entrainment and atmospheric exchange. While the influence of biological activity on O2variability cannot be directly assessed, indirect evidence suggests relatively minor contributions, although with significant uncertainty. Past studies show that O2molecules are expelled from sea ice during brine rejection; sea ice cover can then inhibit air‐sea gas exchange resulting in winter mixed layers that are super‐saturated. Decreasing mixed layer O2concentrations and saturation levels are observed during winter months between 2007 and 2019 in the Canada Basin. Only a minor portion of the decreasing trend in wintertime O2can be attributed to decreased solubility. This suggests the O2decline may be linked to more efficient air‐sea exchange associated with increased open water areas in the winter sea ice pack that are not necessarily detectable via satellite observations.more » « less
- 
            Abstract Analysis of dissolved oxygen (O2) in the Arctic's surface ocean provides insights into gas transfer between the atmosphere‐ice‐ocean system, water mass dynamics, and biogeochemical processes. In the Arctic Ocean's Canada Basin mixed layer, higher O2concentrations are generally observed under sea ice compared to open water regions. Annual cycles of O2and O2saturation, increasing from summer through spring and then sharply declining to late summer, are tightly linked to sea ice cover. The primary fluxes that influence seasonal variability of O2are modeled and compared to Ice‐Tethered Profiler O2observations to understand the relative role of each flux in the annual cycle. Findings suggest that sea ice melt/growth dominates seasonal variations in mixed layer O2, with minor contributions from vertical entrainment and atmospheric exchange. While the influence of biological activity on O2variability cannot be directly assessed, indirect evidence suggests relatively minor contributions, although with significant uncertainty. Past studies show that O2molecules are expelled from sea ice during brine rejection; sea ice cover can then inhibit air‐sea gas exchange resulting in winter mixed layers that are super‐saturated. Decreasing mixed layer O2concentrations and saturation levels are observed during winter months between 2007 and 2019 in the Canada Basin. Only a minor portion of the decreasing trend in wintertime O2can be attributed to decreased solubility. This suggests the O2decline may be linked to more efficient air‐sea exchange associated with increased open water areas in the winter sea ice pack that are not necessarily detectable via satellite observations.more » « less
- 
            Abstract The Arctic Ocean has turned from a perennial ice‐covered ocean into a seasonally ice‐free ocean in recent decades. Such a shift in the air‐ice‐sea interface has resulted in substantial changes in the Arctic carbon cycle and related biogeochemical processes. To quantitatively evaluate how the oceanic CO2sink responds to rapid sea ice loss and to provide a mechanistic explanation, here we examined the air‐sea CO2flux and the regional CO2sink in the western Arctic Ocean from 1994 to 2019 by two complementary approaches: observation‐based estimation and a data‐driven box model evaluation. ThepCO2observations and model results showed that summer CO2uptake significantly increased by about 1.4 ± 0.6 Tg C decade−1in the Chukchi Sea, primarily due to a longer ice‐free period, a larger open area, and an increased primary production. However, no statistically significant increase in CO2sink was found in the Canada Basin and the Beaufort Sea based on both observations and modeled results. The reduced sea ice coverage in summer in the Canada Basin and the enhanced wind speed in the Beaufort Sea potentially promoted CO2uptake, which was, however, counteracted by a rapidly decreased air‐seapCO2gradient therein. Therefore, the current and future Arctic Ocean CO2uptake trends cannot be sufficiently reflected by the air‐seapCO2gradient alone because of the sea ice variations and other environmental factors.more » « less
- 
            Abstract The ratio of dissolved oxygen to argon in seawater is frequently employed to estimate rates of net community production (NCP) in the oceanic mixed layer. The in situ O2/Ar‐based method accounts for many physical factors that influence oxygen concentrations, permitting isolation of the biological oxygen signal produced by the balance of photosynthesis and respiration. However, this technique traditionally relies upon several assumptions when calculating the mixed‐layer O2/Ar budget, most notably the absence of vertical fluxes of O2/Ar and the principle that the air‐sea gas exchange of biological oxygen closely approximates net productivity rates. Employing a Lagrangian study design and leveraging data outputs from a regional physical oceanographic model, we conducted in situ measurements of O2/Ar in the California Current Ecosystem in spring 2016 and summer 2017 to evaluate these assumptions within a “worst‐case” field environment. Quantifying vertical fluxes, incorporating nonsteady state changes in O2/Ar, and comparing NCP estimates evaluated over several day versus longer timescales, we find differences in NCP metrics calculated over different time intervals to be considerable, also observing significant potential effects from vertical fluxes, particularly advection. Additionally, we observe strong diel variability in O2/Ar and NCP rates at multiple stations. Our results reemphasize the importance of accounting for vertical fluxes when interpreting O2/Ar‐derived NCP data and the potentially large effect of nonsteady state conditions on NCP evaluated over shorter timescales. In addition, diel cycles in surface O2/Ar can also bias interpretation of NCP data based on local productivity and the time of day when measurements were made.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
