skip to main content


Title: Optimized workflow for unknown screening using gas chromatography high‐resolution mass spectrometry expands identification of contaminants in silicone personal passive samplers
Rationale

Silicone wristbands have emerged as valuable passive samplers for monitoring of personal exposure to environmental contaminants in the rapidly developing field ofexposomics. Once deployed, silicone wristbands collect and hold a wealth of chemical information that can be interrogated using high‐resolution mass spectrometry (HRMS) to provide a broad coverage of chemical mixtures.

Methods

Gas chromatography coupled to Orbitrap™ mass spectrometry (GC/Orbitrap™ MS) was used to simultaneously perform suspect screening (using in‐house database) and unknown screening (using vendor databases) of extracts from wristbands worn by volunteers. The goal of this study was to optimize a workflow that allows detection of low levels of priority pollutants, with high reliability. In this regard, a data processing workflow for GC/Orbitrap™ MS was developed using a mixture of 123 environmentally relevant standards consisting of pesticides, flame retardants, organophosphate esters, and polycyclic aromatic hydrocarbons as test compounds.

Results

The optimized unknown screening workflow using a search index threshold of 750 resulted in positive identification of 70 analytes in validation samples, and a reduction in the number of false positives by over 50%. An average of 26 compounds with high confidence identification, 7 level 1 compounds and 19 level 2 compounds, were observed in worn wristbands. The data were further analyzed via suspect screening and retrospective suspect screening to identify an additional 36 compounds.

Conclusions

This study provides three important findings: (1) a clear evidence of the importance of sample cleanup in addressing complex sample matrices for unknown analysis, (2) a valuable workflow for the identification of unknown contaminants in silicone wristband samplers using electron ionization HRMS data, and (3) a novel application of GC/Orbitrap™ MS for the unknown analysis of organic contaminants that can be used in exposomics studies.

 
more » « less
Award ID(s):
1919594
NSF-PAR ID:
10385000
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
35
Issue:
8
ISSN:
0951-4198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Per-and polyfluoroalkyl substances (PFAS) are a class of contaminants of emerging concern frequently used in products like aqueous firefighting foams and non-stick coatings due to their stability and surfactant-like qualities. The lack of analytical standards for many emerging PFAS have severely limited our ability to comprehensively identify unknown PFAS contaminants in the environment, especially those that occur as isomers. Annotation of small molecules and identification of unknowns based only on elemental composition and mass fragmentation patterns remain major challenges in nontarget analysis employing liquid chromatography with high-resolution mass spectrometry (LC-HRMS). In this study, chromatographic retention factors (k) and mass spectral fragmentation patterns of 32 known PFAS were determined using our optimized parameters in LC-HRMS. The same method was then used to analyze previously unidentified PFAS in actual environmental samples. Using characteristic ions observed in the MS fragmentation of PFAS, the most probable isomeric structures of the detected PFAS were predicted. To increase confidence in the predicted molecular structure, Density Functional Theory and Conductor-like Screening Model for Realistic Solvents (COSMO-RS) calculations were used to predict physicochemical properties of different constitutional isomers. The DFT calculations facilitated geometric optimization, determination of polarizability, and calculation of the chemical potential the isomers. COSMO-RS uses the chemical potential to predict thermodynamic properties of molecules such as pKa, solubility, and Kow. These properties were then used to make a multi-variable linear regression to predict k values. The model was trained using 32 known PFAS. The properties used were log Kow of the neutral and anion species of the PFAS, and their polarizability. The model was specific enough to predict significantly different k values of unknown compounds with similar structures, which facilitated assignment of isomeric structures of PFAS. 
    more » « less
  2. The growing use of fluorochemicals has elevated the need for non-targeted detection of unknown fluorinated compounds and transformation products. Elemental mass spectrometry coupled to chromatography offers a facile approach for such analyses by using fluorine as an elemental tag. However, efficient ionization of fluorine has been an ongoing challenge. Here, we demonstrate a novel atmospheric-pressure elemental ionization method where fluorinated compounds separated by GC are converted to Na2F+ for non-targeted detection. The compounds are first introduced into a helium dielectric barrier discharge (DBD) for breakdown. The plasma products are subsequently ionized by interaction with a nano-ESI plume of sodium-containing aqueous electrolytes. Our studies point to HF as the main plasma product contributing to Na2F+ formation. Moreover, the results reveal that Na2F+ is largely formed by the ion-neutral reaction between HF and Na2A(NaA)n+, gas-phase reagent ions produced by nano-ESI where A represents the anion of the electrolyte. Near-uniform fluorine response factors are obtained for a wide range of compounds, highlighting good efficiency of HF formation by DBD regardless of chemical structure of the compounds. Detection limits of 3.5 to 19.4 pg fluorine on-column are obtained using the reported GC-DBD-nano-ESI-MS. As an example of non-targeted screening, extractions from oil-and-water-repellent fabrics are analyzed via monitoring Na2F+, resulting in detection of a fluorinated compound on a clothing item. Notably, facile switching of the ion source to atmospheric-pressure chemical ionization with the exact same chromatographic method allows identification of the detected compound at the flagged retention time. 
    more » « less
  3. Nontarget analysis using liquid chromatography–high resolution mass spectrometry (LC–HRMS) is a valuable approach in characterizing for contaminants of emerging concern (CECs) in the environment. However, identification of these analytes can be quite costly or taxing without proper analytical standards. To circumvent this problem we utilize Quantitative structure-retention relationships (QSRR) models to predict elution order and retention times. Properties calculated from density functional theory (DFT) and the conductor-like screening model for real solvents (COSMO-RS) theory are used to produce our QSRR models, which can be calculated for virtually any analyte. We show that this methodology has been successful in identification of per- /poly-fluoroalkyl substances (PFAS) and other contaminants. Nontarget analysis using liquid chromatography– high resolution mass spectrometry (LC–HRMS) is a valuable approach in characterizing for contaminants of emerging concern (CECs) in the environment. However, identification of these analytes can be quite costly or taxing without proper analytical standards. To circumvent this problem we utilize Quantitative structureretention relationships (QSRR) models to predict elution order and retention times. Properties calculated from density functional theory (DFT) and the conductor-like screening model for real solvents (COSMO-RS) theory are used to produce our QSRR models, which can be calculated for virtually any analyte. We show that this methodology has been 
    more » « less
  4. Abstract Land application of treated sewage sludge (also known as biosolids) is considered a sustainable route of disposal because it reduces waste loading into landfills while improving soil health. However, this waste management practice can introduce contaminants from biosolids, such as per- and polyfluoroalkyl substances (PFAS), into the environment. PFAS have been observed to be taken up by plants, accumulate in humans and animals, and have been linked to various negative health effects. There is limited information on the nature and amounts of PFAS introduced from biosolids that have undergone different treatment processes. Therefore, this study developed analytical techniques to improve the characterization of PFAS in complex biosolid samples. Different clean-up techniques were evaluated and applied to waste-activated sludge (WAS) and lime-stabilized primary solids (PS) prior to targeted analysis and suspect screening of biosolid samples. Using liquid chromatography with high-resolution mass spectrometry, a workflow was developed to achieve parallel quantitative targeted analysis and qualitative suspect screening. This study found that concentrations of individual PFAS (27 targeted analytes) can range from 0.6 to 84.6 ng/g in WAS (average total PFAS = 241.4 ng/g) and from 1.6 to 33.8 ng/g in PS (average total PFAS = 72.1 ng/g). The suspect screening workflow identified seven additional PFAS in the biosolid samples, five of which have not been previously reported in environmental samples. Some of the newly identified compounds are a short-chain polyfluorinated carboxylate (a PFOS replacement), a diphosphate ester (a PFOA precursor), a possible transformation product of carboxylate PFAS, and an imidohydrazide which contains a sulfonate and benzene ring. 
    more » « less
  5. Abstract. Organic aerosols generated from the smoldering combustion of woodcritically impact air quality and health for billions of people worldwide;yet, the links between the chemical components and the optical or biologicaleffects of woodsmoke aerosol (WSA) are still poorly understood. In thiswork, an untargeted analysis of the molecular composition of smoldering WSA,generated in a controlled environment from nine types of heartwood fuels(African mahogany, birch, cherry, maple, pine, poplar, red oak, redwood, andwalnut), identified several hundred compounds using gas chromatography massspectrometry (GC-MS) and nano-electrospray high-resolution mass spectrometry(HRMS) with tandem multistage mass spectrometry (MSn). The effects ofWSA on cell toxicity as well as gene expression dependent on the aryl hydrocarbon receptor (AhR) and estrogen receptor(ER) were characterized with cellular assays, andthe visible mass absorption coefficients (MACvis) of WSA were measuredwith ultraviolet–visible spectroscopy. The WSAs studied in this work have significantlevels of biological and toxicological activity, with exposure levels inboth an outdoor and indoor environment similar to or greater than those ofother toxicants. A correlation between the HRMS molecular composition andaerosol properties found that phenolic compounds from the oxidativedecomposition of lignin are the main drivers of aerosol effects, while thecellulose decomposition products play a secondary role; e.g., levoglucosanis anticorrelated with multiple effects. Polycyclic aromatic hydrocarbons(PAHs) are not expected to form at the combustion temperature in this work,nor were they observed above the detection limit; thus, biological and opticalproperties of the smoldering WSA are not attributed to PAHs. Syringylcompounds tend to correlate with cell toxicity, while the more conjugatedmolecules (including several compounds assigned to dimers) have higher AhRactivity and MACvis. The negative correlation between cell toxicity andAhR activity suggests that the toxicity of smoldering WSA to cells is notmediated by the AhR. Both mass-normalized biological outcomes have astatistically significant dependence on the degree of combustion of thewood. In addition, our observations support the fact that the visible lightabsorption of WSA is at least partially due to charge transfer effects inaerosols, as previously suggested. Finally, MACvis has no correlationwith toxicity or receptor signaling, suggesting that key chromophores inthis work are not biologically active on the endpoints tested. 
    more » « less