skip to main content

Title: Virus adhesion to archetypal fomites: A study with human adenovirus and human respiratory syncytial virus
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Chemical Engineering Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tully, Damien (Ed.)
    Virus host shifts are generally associated with novel adaptations to exploit the cells of the new host species optimally. Surprisingly, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has apparently required little to no significant adaptation to humans since the start of the Coronavirus Disease 2019 (COVID-19) pandemic and to October 2020. Here we assess the types of natural selection taking place in Sarbecoviruses in horseshoe bats versus the early SARS-CoV-2 evolution in humans. While there is moderate evidence of diversifying positive selection in SARS-CoV-2 in humans, it is limited to the early phase of the pandemic, and purifying selection is much weaker in SARS-CoV-2 than in related bat Sarbecoviruses . In contrast, our analysis detects evidence for significant positive episodic diversifying selection acting at the base of the bat virus lineage SARS-CoV-2 emerged from, accompanied by an adaptive depletion in CpG composition presumed to be linked to the action of antiviral mechanisms in these ancestral bat hosts. The closest bat virus to SARS-CoV-2, RmYN02 (sharing an ancestor about 1976), is a recombinant with a structure that includes differential CpG content in Spike; clear evidence of coinfection and evolution in bats without involvement of other species. While an undiscovered “facilitating” intermediate species cannot be discounted, collectively, our results support the progenitor of SARS-CoV-2 being capable of efficient human–human transmission as a consequence of its adaptive evolutionary history in bats, not humans, which created a relatively generalist virus. 
    more » « less
  2. ABSTRACT Human polyomaviruses are emerging pathogens that infect a large percentage of the human population and are excreted in urine. Consequently, urine that is collected for fertilizer production often has high concentrations of polyomavirus genes. We studied the fate of infectious double-stranded DNA (dsDNA) BK human polyomavirus (BKPyV) in hydrolyzed source-separated urine with infectivity assays and quantitative PCR (qPCR). Although BKPyV genomes persisted in the hydrolyzed urine for long periods of time ( T 90 [time required for 90% reduction in infectivity or gene copies] of >3 weeks), the viruses were rapidly inactivated ( T 90 of 1.1 to 11 h) in most of the tested urine samples. Interestingly, the infectivity of dsDNA bacteriophage surrogate T3 ( T 90 of 24 to 46 days) was much more persistent than that of BKPyV, highlighting a major shortcoming of using bacteriophages as human virus surrogates. Pasteurization and filtration experiments suggest that BKPyV virus inactivation was due to microorganism activity in the source-separated urine, and SDS-PAGE Western blots showed that BKPyV protein capsid disassembly is concurrent with inactivation. Our results imply that stored urine does not pose a substantial risk of BKPyV transmission, that qPCR and infectivity of the dsDNA surrogate do not accurately depict BKPyV fate, and that microbial inactivation is driven by structural elements of the BKPyV capsid. IMPORTANCE We demonstrate that a common urinary tract virus has a high susceptibility to the conditions in hydrolyzed urine and consequently would not be a substantial exposure route to humans using urine-derived fertilizers. The results have significant implications for understanding virus fate. First, by demonstrating that the dsDNA (double-stranded DNA) genome of the polyomavirus lasts for weeks despite infectivity lasting for hours to days, our work highlights the shortcomings of using qPCR to estimate risks from unculturable viruses. Second, commonly used dsDNA surrogate viruses survived for weeks under the same conditions that BK polyomavirus survived for only hours, highlighting issues with using virus surrogates to predict how human viruses will behave in the environment. Finally, our mechanistic inactivation analysis provides strong evidence that microbial activity drives rapid virus inactivation, likely through capsid disassembly. Overall, our work underlines how subtle structural differences between viruses can greatly impact their environmental fate. 
    more » « less