skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogenetic Distance Metrics for Studies of Focal Species in Communities: Quantiles and Cumulative Curves
The phylogenetic distance between species often predicts differences in ecologically important traits. The phylogenetic diversity and structure of biological communities can inform our understanding of the processes that shape those communities, and there is a well-developed framework for comparing phylogenetic structures of communities. However, particularly in studies of phylogenetic distances from one focal species to other members of its assemblage (a one-to-many framework), the standard metrics of community-wide studies encounter significant limitations due to the left-skewed distribution of pairwise phylogenetic distances in most biological communities. For studies that require estimating the degree of phylogenetic isolation of a focal taxon, the mean phylogenetic distance (MPD) usually provides little power to distinguish among taxa because it is heavily weighted by the many ways to be distantly related, whereas the nearest taxon distance (NTD) is highly idiosyncratic and ignores cases where multiple close relatives may contribute equally strongly to influence the focal species. Here we highlight the value of examining the cumulative distribution of phylogenetic distances in studies that take a focal-species approach. We describe and discuss the benefits of two new metrics. An integrated metric of phylogenetic distances (AUPhyDC) uses information from the whole cumulative distribution, whereas the tenth quantile (PD10) is an extremely simple metric that improves on NTD by capturing the influence of multiple close relatives on ecological interactions. Several recent examples found that PD10 did a better job of revealing ecological patterns than NTD or MPD. We provide R code to facilitate the use of these approaches and advocate for the inclusion of PD10 along with NTD and MPD in statistical packages for phylogenetic ecology.  more » « less
Award ID(s):
1655896
PAR ID:
10385028
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Diversity
Volume:
14
Issue:
7
ISSN:
1424-2818
Page Range / eLocation ID:
521
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here, we investigated environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three to four dominant plant species from each of three sites of varying salinity. We assessed taxonomic diversity and composition as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD). When we analyzed plant hosts present across the entire gradient, we found that the effect of the environment on phylogenetic diversity (as measured by MPD) was host dependent and suggested phylogenetic clustering in some circumstances. We found that both environment and host plant affected taxonomic composition of fungal endophytes, but only host plant affected phylogenetic composition, suggesting different host plants selected for fungal taxa drawn from distinct phylogenetic clades, whereas environmental assemblages were drawn from similar clades. Our study demonstrates that including phylogenetic, as well as taxonomic, community metrics can provide a deeper understanding of community assembly in endophytes. 
    more » « less
  2. Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here we collected data to investigate environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three-four dominant plant species from each of three sites of varying salinity. We provide data on abundance and taxonomy of the isolated fungal taxa as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD). 
    more » « less
  3. Abstract Understanding how biotic and abiotic interactions influence community assembly and composition is a fundamental goal in community ecology. Addressing this issue is particularly tractable along elevational gradients in tropical mountains that feature substantial abiotic gradients and rates of species turnover. We examined elevational patterns of avian community structure on 2 mountains in Malaysian Borneo to assess changes in the relative strength of biotic interactions and abiotic constraints. In particular, we used metrics based on (1) phylogenetic relatedness and (2) functional traits associated with both resource acquisition and tolerance of abiotic challenges to identify patterns and causes of elevational differences in community structure. High elevation communities were composed of more phylogenetically and functionally similar species than would be expected by chance. Resource acquisition traits, in particular, were clustered at high elevations, suggesting low resource and habitat diversity were important drivers of those communities. Traits typically associated with tolerance of cold temperatures and low atmospheric pressure showed no elevational patterns. All traits were neutral or overdispersed at low elevations suggesting an absence of strong abiotic filters or an increased influence of interspecific competition. However, relative bill size, which is important for thermoregulation, was larger in low elevation communities, suggesting abiotic factors were also influential there. Regardless of metric, clustered and neutral communities were more frequent than overdispersed communities overall, implying that interspecific competition among close relatives may not be a pervasive driver of elevational distribution and community structure of tropical birds. Overall, our analyses reveal that a diverse set of predominantly biotic factors underlie elevational variation in community structure on tropical mountains. 
    more » « less
  4. Abstract AimNitrogen (N)‐fixing plants are an important component of global plant communities, but the drivers of N‐fixing plant diversity, especially in temperate regions, remain underexplored. Here, we examined broad‐scale patterns of N‐fixing and non‐fixing plant phylogenetic diversity (PD) and species richness (SR) across a wide portion of temperate North America, focusing on relationships with soil N and aridity. We also tested whether exotic species, with and without N‐fixing symbiosis, have fewer abiotic limitations compared with native species. LocationUSA and Puerto Rico. Time periodCurrent. Major taxa studiedVascular plants, focusing on N‐fixing groups (orders Fabales, Fagales, Rosales and Cucurbitales). MethodsWe subset National Ecological Observatory Network (NEON) plant plot data from all sites along two axes (N fixing–non‐N fixing and native–exotic), calculating plot‐level SR, PD and mean pairwise phylogenetic distance (MPD). We then used linear mixed models to investigate relationships between diversity values and key soil measurements, along with aridity, temperature and fire frequency. ResultsAridity was the sole predictor of proportional phylogenetic diversity of N fixers. The SR of N fixers still decreased marginally in arid regions, whereas native N‐fixer MPD increased with aridity, indicative of unique lineages of N fixers in the driest conditions, in contrast to native non‐N fixers. The SR of both native N fixers and non‐N fixers increased in low‐N soils. Aridity did not affect SR of exotic non‐N fixers, unlike other groups, whereas exotic N fixers showed lower MPD in increasingly high‐N soils, suggesting filtering, contrary what was found for native N fixers. Main conclusionsOur results suggest that it is not nitrogen, or any soil nutrient, that has the strongest effect on the relative success of N fixers in plant communities. Rather, aridity is the key driver, at least for native species, in line with empirical results from other biomes and increased understanding of N fixation as a key mechanism to avoid water loss. 
    more » « less
  5. Abstract Biotic specialization holds information about the assembly, evolution, and stability of biological communities. Partner availabilities can play an important role in enabling species interactions, where uneven partner availabilities can bias estimates of biotic specialization when using phylogenetic diversity indices. It is therefore important to account for partner availability when characterizing biotic specialization using phylogenies. We developed an index, phylogenetic structure of specialization (PSS), that avoids bias from uneven partner availabilities by uncoupling the null models for interaction frequency and phylogenetic distance. We incorporate the deviation between observed and random interaction frequencies as weights into the calculation of partner phylogenetic α‐diversity. To calculate the PSS index, we then compare observed partner phylogenetic α‐diversity to a null distribution generated by randomizing phylogenetic distances among the same number of partners. PSS quantifies the phylogenetic structure (i.e., clustered, overdispersed, or random) of the partners of a focal species. We show with simulations that the PSS index is not correlated with network properties, which allows comparisons across multiple systems. We also implemented PSS on empirical networks of host–parasite, avian seed‐dispersal, lichenized fungi–cyanobacteria, and hummingbird pollination interactions. Across these systems, a large proportion of taxa interact with phylogenetically random partners according to PSS, sometimes to a larger extent than detected with an existing method that does not account for partner availability. We also found that many taxa interact with phylogenetically clustered partners, while taxa with overdispersed partners were rare. We argue that species with phylogenetically overdispersed partners have often been misinterpreted as generalists when they should be considered specialists. Our results highlight the important role of randomness in shaping interaction networks, even in highly intimate symbioses, and provide a much‐needed quantitative framework to assess the role that evolutionary history and symbiotic specialization play in shaping patterns of biodiversity. PSS is available as an R package athttps://github.com/cjpardodelahoz/pss. 
    more » « less