skip to main content


Title: Planned Science and Scientific Discovery in Equatorial Aeronomy
This paper discusses the relationship between planning and discovery in science using examples drawn from equatorial aeronomy in general and research at the Jicamarca Radio Observatory in particular. The examples reveal a pattern of discoveries taking place despite rather than because of careful planning.  more » « less
Award ID(s):
1732209
NSF-PAR ID:
10385050
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
9
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As many robot automation applications increasingly rely on multi-core processing or deep-learning models, cloud computing is becoming an attractive and economically viable resource for systems that do not contain high computing power onboard. Despite its immense computing capacity, it is often underused by the robotics and automation community due to lack of expertise in cloud computing and cloud-based infrastructure. Fog Robotics balances computing and data between cloud edge devices. We propose a software framework, FogROS, as an extension of the Robot Operating System (ROS), the de-facto standard for creating robot automation applications and components. It allows researchers to deploy components of their software to the cloud with minimal effort, and correspondingly gain access to additional computing cores, GPUs, FPGAs, and TPUs, as well as predeployed software made available by other researchers. FogROS allows a researcher to specify which components of their software will be deployed to the cloud and to what type of computing hardware. We evaluate FogROS on 3 examples: (1) simultaneous localization and mapping (ORB-SLAM2), (2) Dexterity Network (Dex-Net) GPU-based grasp planning, and (3) multi-core motion planning using a 96-core cloud-based server. In all three examples, a component is deployed to the cloud and accelerated with a small change in system launch configuration, while incurring additional latency of 1.2 s, 0.6 s, and 0.5 s due to network communication, the computation speed is improved by 2.6x, 6.0x and 34.2x, respectively. 
    more » « less
  2. Mobility, power, and price points often dictate that robots do not have sufficient computing power on board to run contemporary robot algorithms at desired rates. Cloud computing providers such as AWS, GCP, and Azure offer immense computing power on demand, but tapping into that power from a robot is non-trivial. We present FogROS2, an open-source platform to facilitate cloud and fog robotics that is compatible with the emerging Robot Operating System 2 (ROS 2) standard. FogROS2 is completely redesigned and distinct from its predecessor FogROS1 in 9 ways, and has lower latency, overhead, and startup times; improved usability, and additional automa-tion, such as region and computer type selection. Additionally, FogROS2 was added to the official distribution of ROS 2, gaining performance, timing, and additional improvements associated with ROS 2. In examples, FogROS2 reduces SLAM latency by 50 %, reduces grasp planning time from 14 s to 1.2 s, and speeds up motion planning 28x. When compared to FogROS1, FogROS2 reduces network utilization by up to 3.8x, improves startup time by 63 %, and network round-trip latency by 97 %for images using video compression. The source code, examples, and documentation for FogROS2 are available at https://github.com/BerkeleyAutomation/FogROS2, and is available through the official ROS 2 repository at https://index.ros.org/p/fogros2/ 
    more » « less
  3. Understanding the geometry of collision-free configuration space (C-free) in the presence of Cartesian-space obstacles is an essential ingredient for collision-free motion planning. While it is possible to check for collisions at a point using standard algorithms, to date no practical method exists for computing C-free regions with rigorous certificates due to the complexity of mapping Cartesian-space obstacles through the kinematics. In this work, we present the first to our knowledge rigorous method for approximately decomposing a rational parametrization of C-free into certified polyhedral regions. Our method, called C-Iris (C-space Iterative Regional Inflation by Semidefinite programming), generates large, convex polytopes in a rational parameterization of the configuration space which are rigorously certified to be collision-free. Such regions have been shown to be useful for both optimization-based and randomized motion planning. Based on convex optimization, our method works in arbitrary dimensions, only makes assumptions about the convexity of the obstacles in the 3D Cartesian space, and is fast enough to scale to realistic problems in manipulation. We demonstrate our algorithm’s ability to fill a non-trivial amount of collision-free C-space in several 2-DOF examples where the C-space can be visualized, as well as the scalability of our algorithm on a 7-DOF KUKA iiwa, a 6-DOF UR3e, and 12-DOF bimanual manipulators. An implementation of our algorithm is open-sourced in Drake . We furthermore provide examples of our algorithm in interactive Python notebooks .

     
    more » « less
  4. In hierarchical planning for Markov decision processes (MDPs), temporal abstraction allows planning with macro-actions that take place at different time scale in the form of sequential composition. In this paper, we propose a novel approach to compositional reasoning and hierarchical planning for MDPs under co-safe temporal logic constraints. In addition to sequential composition, we introduce a composition of policies based on generalized logic composition: Given sub-policies for sub-tasks and a new task expressed as logic compositions of subtasks, a semi-optimal policy, which is optimal in planning with only sub-policies, can be obtained by simply composing sub-polices. Thus, a synthesis algorithm is developed to compute optimal policies efficiently by planning with primitive actions, policies for sub-tasks, and the compositions of sub-policies, for maximizing the probability of satisfying constraints specified in the fragment of co-safe temporal logic. We demonstrate the correctness and efficiency of the proposed method in stochastic planning examples with a single agent and multiple task specifications. 
    more » « less
  5. null (Ed.)
    The objective of this work is to augment the basic abilities of a robot by learning to use sensorimotor primitives to solve complex long-horizon manipulation problems. This requires flexible generative planning that can combine primitive abilities in novel combinations and, thus, generalize across a wide variety of problems. In order to plan with primitive actions, we must have models of the actions: under what circumstances will executing this primitive successfully achieve some particular effect in the world? We use, and develop novel improvements to, state-of-the-art methods for active learning and sampling. We use Gaussian process methods for learning the constraints on skill effectiveness from small numbers of expensive-to-collect training examples. In addition, we develop efficient adaptive sampling methods for generating a comprehensive and diverse sequence of continuous candidate control parameter values (such as pouring waypoints for a cup) during planning. These values become end-effector goals for traditional motion planners that then solve for a full robot motion that performs the skill. By using learning and planning methods in conjunction, we take advantage of the strengths of each and plan for a wide variety of complex dynamic manipulation tasks. We demonstrate our approach in an integrated system, combining traditional robotics primitives with our newly learned models using an efficient robot task and motion planner. We evaluate our approach both in simulation and in the real world through measuring the quality of the selected primitive actions. Finally, we apply our integrated system to a variety of long-horizon simulated and real-world manipulation problems. 
    more » « less