skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cationic peptide carriers enable long-term delivery of insulin-like growth factor-1 to suppress osteoarthritis-induced matrix degradation
Abstract Background Insulin-like growth factor-1 (IGF-1) has the potential to be used for osteoarthritis (OA) treatment but has not been evaluated in clinics yet owing to toxicity concerns. It suffers from short intra-joint residence time and a lack of cartilage targeting following its intra-articular administration. Here, we synthesize an electrically charged cationic formulation of IGF-1 by using a short-length arginine-rich, hydrophilic cationic peptide carrier (CPC) with a net charge of +14, designed for rapid and high uptake and retention in both healthy and arthritic cartilage. Methods IGF-1 was conjugated to CPC by using a site-specific sulfhydryl reaction via a bifunctional linker. Intra-cartilage depth of penetration and retention of CPC-IGF-1 was compared with the unmodified IGF-1. The therapeutic effectiveness of a single dose of CPC-IGF-1 was compared with free IGF-1 in an IL-1α-challenged cartilage explant culture post-traumatic OA model. Results CPC-IGF-1 rapidly penetrated through the full thickness of cartilage creating a drug depot owing to electrostatic interactions with negatively charged aggrecan-glycosaminoglycans (GAGs). CPC-IGF-1 remained bound within the tissue while unmodified IGF-1 cleared out. Treatment with a single dose of CPC-IGF-1 effectively suppressed IL-1α-induced GAG loss and nitrite release and rescued cell metabolism and viability throughout the 16-day culture period, while free IGF at the equivalent dose was not effective. Conclusions CPC-mediated depot delivery of IGF-1 protected cartilage by suppressing cytokine-induced catabolism with only a single dose. CPC is a versatile cationic motif that can be used for intra-cartilage delivery of other similar-sized drugs.  more » « less
Award ID(s):
2141841
PAR ID:
10385058
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Arthritis Research & Therapy
Volume:
24
Issue:
1
ISSN:
1478-6362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gene therapy has the potential to facilitate targeted expression of therapeutic proteins to promote cartilage regeneration in osteoarthritis (OA). The dense, avascular, aggrecan‐glycosaminoglycan (GAG) rich negatively charged cartilage, however, hinders their transport to reach chondrocytes in effective doses. While viral vector mediated gene delivery has shown promise, concerns over immunogenicity and tumorigenic side‐effects persist. To address these issues, this study develops surface‐modified cartilage‐targeting exosomes as non‐viral carriers for gene therapy. Charge‐reversed cationic exosomes are engineered for mRNA delivery by anchoring cartilage targeting optimally charged arginine‐rich cationic motifs into the anionic exosome bilayer by using buffer pH as a charge‐reversal switch. Cationic exosomes penetrated through the full‐thickness of early‐stage arthritic human cartilage owing to weak‐reversible ionic binding with GAGs and efficiently delivered the encapsulated eGFP mRNA to chondrocytes residing in tissue deep layers, while unmodified anionic exosomes do not. When intra‐articularly injected into destabilized medial meniscus mice knees with early‐stage OA, mRNA loaded charge‐reversed exosomes overcame joint clearance and rapidly penetrated into cartilage, creating an intra‐tissue depot and efficiently expressing eGFP; native exosomes remained unsuccessful. Cationic exosomes thus hold strong translational potential as a platform technology for cartilage‐targeted non‐viral delivery of any relevant mRNA targets for OA treatment. 
    more » « less
  2. Osteoarthritis (OA), a chronic and degenerative joint disease, remains a challenge in treatment due to the lack of disease-modifying therapies. As a promising therapeutic agent, adipose-derived stem cells (ADSCs) have an effective anti-inflammatory and chondroprotective paracrine effect that can be enhanced by genetic modification. Unfortunately, direct cell delivery without matrix support often results in poor viability of therapeutic cells. Herein, a hydrogel implant approach that enabled intra-articular delivery of gene-engineered ADSCs was developed for improved therapeutic outcomes in a surgically induced rat OA model. An injectable extracellular matrix (ECM)-mimicking hydrogel was prepared as the carrier for cell delivery, providing a favorable microenvironment for ADSC spreading and proliferation. The ECM-mimicking hydrogel could reduce cell death during and post injection. Additionally, ADSCs were genetically modified to overexpress transforming growth factor-β1 (TGF-β1), one of the paracrine factors that exert an anti-inflammatory and pro-anabolic effect. The gene-engineered ADSCs overexpressing TGF-β1 (T-ADSCs) had an enhanced paracrine effect on OA-like chondrocytes, which effectively decreased the expression of tumor necrosis factor-alpha and increased the expression of collagen II and aggrecan. In a surgically induced rat OA model, intra-articular injection of the T-ADSC-loaded hydrogel markedly reduced cartilage degeneration, joint inflammation, and the loss of the subchondral bone. Taken together, this study provides a potential biomaterial strategy for enhanced OA treatment by delivering the gene-engineered ADSCs within an ECM-mimicking hydrogel. 
    more » « less
  3. Disorders of cartilage homeostasis and chondrocyte apoptosis are major events in the pathogenesis of osteoarthritis (OA). Herein, we sought to assess the chondroprotective effect and underlying mechanisms of a novel chemically modified curcumin, CMC2.24, in modulating extracellular matrix (ECM) homeostasis and inhibiting chondrocyte apoptosis. Rats underwent the anterior cruciate ligament transection and medial menisci resection were treated by intra-articular injection with CMC2.24. In vitro study, rat chondrocytes were pretreated with CMC2.24 before stimulation with sodium nitroprusside (SNP). The effects of CMC2.24 on cartilage homeostasis and chondrocyte apoptosis were observed. The results from in vivo studies demonstrated that the intra-articular administration of CMC2.24 delayed cartilage degeneration and suppressed chondrocyte apoptosis. CMC2.24 ameliorated osteoarthritic cartilage destruction by promoting collagen 2a1 production and inhibited cartilage degradation and apoptosis by suppressing hypoxia-inducible factor-2a (Hif-2α), matrix metalloproteinase-3 (MMP-3), runt-related transcription factor 2 (RUNX2), cleaved caspase-3, vascular endothelial growth factor (VEGF), and the phosphorylation of IκBα and NF-κB p65. The in vitro results revealed that CMC2.24 exhibited a strong inhibitory effect on SNP-induced chondrocyte catabolism and apoptosis. The SNP-enhanced expression of Hif-2α, catabolic and apoptotic factor, decreased after CMC2.24 treatment in a dose-dependent manner. CMC2.24 pretreatment effectively inhibited SNP-induced IκBα and NF-κB p65 phosphorylation in rat chondrocytes, whereas the pretreatment with NF-κB antagonist BMS-345541 significantly enhanced the effects of CMC2.24. Taken together, these results demonstrated that CMC2.24 attenuates OA progression by modulating ECM homeostasis and chondrocyte apoptosis via suppression of the NF-κB/Hif-2α axis, thus providing a new perspective for the therapeutic strategy of OA. 
    more » « less
  4. To investigate the effects and mechanisms of irisin, a newly discovered myokine, in cartilage development, osteoarthritis (OA) pathophysiology and its therapeutic potential for treating OA we applied the following five strategical analyses using (1) murine joint tissues at different developmental stages; (2) human normal and OA pathological tissue samples; (3) experimental OA mouse model; (4) irisin gene knockout (KO) and knock in (KI) mouse lines and their cartilage cells; (5) in vitro mechanistic experiments. We found that Irisin was involved in all stages of cartilage development. Both human and mouse OA tissues showed a decreased expression of irisin. Intra-articular injection of irisin attenuated ACLT-induced OA progression. Irisin knockout mice developed severe OA while irisin overexpression in both irisin KI mice and intraarticular injection of irisin protein attenuated OA progression. Irisin inhibited inflammation and promoted anabolism in chondrogenic ADTC5 cells. Proliferative potential of primary chondrocytes from KI mice was found to be enhanced, while KO mice showed an inhibition under normal or inflammatory conditions. The primary chondrocytes from irisin KI mice showed reduced expression of inflammatory factors and the chondrocytes isolated from KO mice showed an opposite pattern. In conclusion, it is the first time to show that irisin is involved in cartilage development and OA pathogenesis. Irisin has the potential to ameliorate OA progression by decreasing cartilage degradation and inhibiting inflammation, which could lead to the development of a novel therapeutic target for treating bone and cartilage disorders including osteoarthritis. 
    more » « less
  5. Abstract Osteoarthritis (OA) of the knee joint is a degenerative disease initiated by mechanical stress that affects millions of individuals. The disease manifests as joint damage and synovial inflammation. Post-traumatic osteoarthritis (PTOA) is a specific form of OA caused by mechanical trauma to the joint. The progression of PTOA is prevented by immediate post-injury therapeutic intervention. Intra-articular injection of anti-inflammatory therapeutics (e.g. corticosteroids) is a common treatment option for OA before end-stage surgical intervention. However, the efficacy of intra-articular injection is limited due to poor drug retention time in the joint space and the variable efficacy of corticosteroids. Here, we endeavored to characterize a four-arm maleimide-functionalized polyethylene glycol (PEG-4MAL) hydrogel system as a ‘mechanical pillow’ to cushion the load-bearing joint, withstand repetitive loading and improve the efficacy of intra-articular injections of nanoparticles containing dexamethasone, an anti-inflammatory agent. PEG-4MAL hydrogels maintained their mechanical properties after physiologically relevant cyclic compression and released therapeutic payload in an on-demand manner under in vitro inflammatory conditions. Importantly, the on-demand hydrogels did not release nanoparticles under repetitive mechanical loading as experienced by daily walking. Although dexamethasone had minimal protective effects on OA-like pathology in our studies, the PEG-4MAL hydrogel functioned as a mechanical pillow to protect the knee joint from cartilage degradation and inhibit osteophyte formation in an in vivo load-induced OA mouse model. 
    more » « less