skip to main content


Title: Private Frequency Estimation via Projective Geometry
In this work, we propose a new algorithm ProjectiveGeometryResponse (PGR) for locally differentially private (LDP) frequency estimation. For universe size of k and with n users, our eps-LDP algorithm has communication cost ceil(log_2 k) and computation cost O(n + k\exp(eps) log k) for the server to approximately reconstruct the frequency histogram, while achieve optimal privacy-utility tradeoff. In many practical settings this is a significant improvement over the O (n+k^2) computation cost that is achieved by the recent PI-RAPPOR algorithm (Feldman and Talwar; 2021). Our empirical evaluation shows a speedup of over 50x over PI-RAPPOR while using approximately 75x less memory. In addition, the running time of our algorithm is comparable to that of HadamardResponse (Acharya, Sun, and Zhang; 2019) and RecursiveHadamardResponse (Chen, Kairouz, and Ozgur; 2020) which have significantly worse reconstruction error. The error of our algorithm essentially matches that of the communication- and time-inefficient but utility-optimal SubsetSelection (SS) algorithm (Ye and Barg; 2017). Our new algorithm is based on using Projective Planes over a finite field to define a small collection of sets that are close to being pairwise independent and a dynamic programming algorithm for approximate histogram reconstruction for the server.  more » « less
Award ID(s):
1909314
NSF-PAR ID:
10385077
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
162
ISSN:
2640-3498
Page Range / eLocation ID:
6418-6433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball. Existing algorithms for this problem either incur sub-optimal error or have high communication and/or run-time complexity. We propose a new algorithmic framework, ProjUnit, for private mean estimation that yields algorithms that are computationally efficient, have low communication complexity, and incur optimal error up to a 1+o(1)-factor. Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an optimal algorithm such as PrivUnitG in the lower-dimensional space. In addition, we show that, by appropriately correlating the random projection matrices across devices, we can achieve fast server run-time. We mathematically analyze the error of the algorithm in terms of properties of the random projections, and study two instantiations. Lastly, our experiments for private mean estimation and private federated learning demonstrate that our algorithms empirically obtain nearly the same utility as optimal ones while having significantly lower communication and computational cost. 
    more » « less
  2. We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball. Existing algorithms for this problem either incur suboptimal error or have high communication and/or run-time complexity. We propose a new algorithmic framework, ProjUnit, for private mean estimation that yields algorithms that are computationally efficient, have low communication complexity, and incur optimal error up to a 1 + o(1)-factor. Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an optimal algorithm such as PrivUnitG in the lower-dimensional space. In addition, we show that, by appropriately correlating the random projection matrices across devices, we can achieve fast server run-time. We mathematically analyze the error of the algorithm in terms of properties of the random projections, and study two instantiations. Lastly, our experiments for private mean estimation and private federated learning demonstrate that our algorithms empirically obtain nearly the same utility as optimal ones while having significantly lower communication and computational cost. 
    more » « less
  3. Motivated by an attempt to understand the formation and development of (human) language, we introduce a "distributed compression" problem. In our problem a sequence of pairs of players from a set of K players are chosen and tasked to communicate messages drawn from an unknown distribution Q. Arguably languages are created and evolve to compress frequently occurring messages, and we focus on this aspect. The only knowledge that players have about the distribution Q is from previously drawn samples, but these samples differ from player to player. The only common knowledge between the players is restricted to a common prior distribution P and some constant number of bits of information (such as a learning algorithm). Letting T_eps denote the number of iterations it would take for a typical player to obtain an eps-approximation to Q in total variation distance, we ask whether T_eps iterations suffice to compress the messages down roughly to their entropy and give a partial positive answer. We show that a natural uniform algorithm can compress the communication down to an average cost per message of O(H(Q) + log (D(P || Q) + O(1)) in $\tilde{O}(T_eps)$ iterations while allowing for O(eps)-error, where D(. || .) denotes the KL-divergence between distributions. For large divergences this compares favorably with the static algorithm that ignores all samples and compresses down to H(Q) + D(P || Q) bits, while not requiring (T_eps . K) iterations that it would take players to develop optimal but separate compressions for each pair of players. Along the way we introduce a "data-structural" view of the task of communicating with a natural language and show that our natural algorithm can also be implemented by an efficient data structure, whose storage is comparable to the storage requirements of Q and whose query complexity is comparable to the lengths of the message to be compressed. Our results give a plausible mathematical analogy to the mechanisms by which human languages get created and evolve, and in particular highlights the possibility of coordination towards a joint task (agreeing on a language) while engaging in distributed learning. 
    more » « less
  4. This paper studies Byzantine reliable broadcast (BRB) under asynchronous networks, and improves the state-of-the-art protocols from the following aspects. Near-optimal communication cost: We propose two new BRB protocols for n nodes and input message M that has communication cost O(n|M| +n^2 log n), which is near-optimal due to the lower bound of Ω(n|M| +n^2). The first BRB protocol assumes threshold signature but is easy to understand, while the second BRB protocol is error-free but less intuitive. Improved computation: We propose a new construction that improves the computation cost of the state-of-the-art BRB by avoiding the expensive online error correction on the input message, while achieving the same communication cost. Balanced communication: We propose a technique named balanced multicast that can balance the communication cost for BRB protocols where the broadcaster needs to multicast the message M while other nodes only needs to multicast coded fragments of size O(|M|/n + log n). The balanced multicast technique can be applied to many existing BRB protocols as well as all our new constructions in this paper, and can make every node incur about the same communication cost. Finally, we present a lower bound to show the near optimality of our protocol in terms of communication cost at each node. 
    more » « less
  5. Writing concurrent programs is notoriously hard due to scheduling non-determinism. The most common concurrency bugs are data races, which are accesses to a shared resource that can be executed concurrently. Dynamic data-race prediction is the most standard technique for detecting data races: given an observed, data-race-free trace t, the task is to determine whether t can be reordered to a trace t* that exposes a data-race. Although the problem has received significant practical attention for over three decades, its complexity has remained elusive. In this work, we address this lacuna, identifying sources of intractability and conditions under which the problem is efficiently solvable. Given a trace t of size n over k threads, our main results are as follows. First, we establish a general O(k · n2·(k-1) upper-bound, as well as an O(nk) upper-bound when certain parameters of t are constant. In addition, we show that the problem is NP-hard and even W[1]-hard parameterized by k, and thus unlikely to be fixed-parameter tractable. Second, we study the problem over acyclic communication topologies, such as server-clients hierarchies. We establish an O(k2 · d · n2 · log n) upper-bound, where d is the number of shared variables accessed in t. In addition, we show that even for traces with k = 2 threads, the problem has no O(n2-ϵ) algorithm under the Orthogonal Vectors conjecture. Since any trace with 2 threads defines an acyclic topology, our upper-bound for this case is optimal up to polynomial improvements for up to moderate values of k and d. Finally, motivated by existing heuristics, we study a distance-bounded version of the problem, where the task is to expose a data race by a witness trace that is similar to t. We develop an algorithm that works in O(n) time when certain parameters of t are constant. 
    more » « less