The diaphragm is the "respiratory pump;" the muscle that generates pressure to allow ventilation. Diaphragm muscles play a vital function and thus are subjected to continuous mechanical loading. One of its peculiarities is the ability to generate distinct mechanical and biochemical responses depending on the direction through which the mechanical forces applied to it. Contractile forces originated from its contractile components are transmitted to other structural components of its muscle fibers and the surrounding connective tissue. The anisotropic mechanical properties of the diaphragm are translated into biochemical signals that are directionally mechanosensitive by mechanisms that appear to be unique to this muscle. Here, we reviewed the current state of knowledge on the biochemical pathways regulated by mechanical signals emphasizing their anisotropic behavior in the normal diaphragm and analyzed how they are affected in muscular dystrophies.
more »
« less
An implantable soft robotic ventilator augments inspiration in a pig model of respiratory insufficiency
Abstract Severe diaphragm dysfunction can lead to respiratory failure and to the need for permanent mechanical ventilation. Yet permanent tethering to a mechanical ventilator through the mouth or via tracheostomy can hinder a patient’s speech, swallowing ability and mobility. Here we show, in a porcine model of varied respiratory insufficiency, that a contractile soft robotic actuator implanted above the diaphragm augments its motion during inspiration. Synchronized actuation of the diaphragm-assist implant with the native respiratory effort increased tidal volumes and maintained ventilation flow rates within the normal range. Robotic implants that intervene at the diaphragm rather than at the upper airway and that augment physiological metrics of ventilation may restore respiratory performance without sacrificing quality of life.
more »
« less
- Award ID(s):
- 1847541
- PAR ID:
- 10385121
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Biomedical Engineering
- ISSN:
- 2157-846X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we describe a benchtop model that recreates the motion and function of the diaphragm using a combination of advanced robotic and organic tissue. First, we build a high-fidelity anthropomorphic model of the diaphragm using thermoplastic and elastomeric material based on clinical imaging data. We then attach pneumatic artificial muscles to this elastomeric diaphragm, pre-programmed to move in a clinically relevant manner when pressurized. By inserting this diaphragm as the divider between two chambers in a benchtop model—one representing the thorax and the other the abdomen—and subsequently activating the diaphragm, we can recreate the pressure changes that cause lungs to inflate and deflate during regular breathing. Insertion of organic lungs in the thoracic cavity demonstrates this inflation and deflation in response to the pressures generated by our robotic diaphragm. By tailoring the input pressures and timing, we can represent different breathing motions and disease states. We instrument the model with multiple sensors to measure pressures, volumes, and flows and display these data in real-time, allowing the user to vary inputs such as the breathing rate and compliance of various components, and so they can observe and measure the downstream effect of changing these parameters. In this way, the model elucidates fundamental physiological concepts and can demonstrate pathology and the interplay of components of the respiratory system. This model will serve as an innovative and effective pedagogical tool for educating students on respiratory physiology and pathology in a user-controlled, interactive manner. It will also serve as an anatomically and physiologically accurate testbed for devices or pleural sealants that reside in the thoracic cavity, representing a vast improvement over existing models and ultimately reducing the requirement for testing these technologies in animal models. Finally, it will act as an impactful visualization tool for educating and engaging the broader community.more » « less
-
Background Acute respiratory failure is generally treated with invasive mechanical ventilation or noninvasive respiratory support strategies. The efficacies of the various strategies are not fully understood. There is a need for accurate therapy-based phenotyping for secondary analyses of electronic health record data to answer research questions regarding respiratory management and outcomes with each strategy. Objective The objective of this study was to address knowledge gaps related to ventilation therapy strategies across diverse patient populations by developing an algorithm for accurate identification of patients with acute respiratory failure. To accomplish this objective, our goal was to develop rule-based computable phenotypes for patients with acute respiratory failure using remotely monitored intensive care unit (tele-ICU) data. This approach permits analyses by ventilation strategy across broad patient populations of interest with the ability to sub-phenotype as research questions require. Methods Tele-ICU data from ≥200 hospitals were used to create a rule-based algorithm for phenotyping patients with acute respiratory failure, defined as an adult patient requiring invasive mechanical ventilation or a noninvasive strategy. The dataset spans a wide range of hospitals and ICU types across all US regions. Structured clinical data, including ventilation therapy start and stop times, medication records, and nurse and respiratory therapy charts, were used to define clinical phenotypes. All adult patients of any diagnoses with record of ventilation therapy were included. Patients were categorized by ventilation type, and analysis of event sequences using record timestamps defined each phenotype. Manual validation was performed on 5% of patients in each phenotype. Results We developed 7 phenotypes: (0) invasive mechanical ventilation, (1) noninvasive positive-pressure ventilation, (2) high-flow nasal insufflation, (3) noninvasive positive-pressure ventilation subsequently requiring intubation, (4) high-flow nasal insufflation subsequently requiring intubation, (5) invasive mechanical ventilation with extubation to noninvasive positive-pressure ventilation, and (6) invasive mechanical ventilation with extubation to high-flow nasal insufflation. A total of 27,734 patients met our phenotype criteria and were categorized into these ventilation subgroups. Manual validation of a random selection of 5% of records from each phenotype resulted in a total accuracy of 88% and a precision and recall of 0.8789 and 0.8785, respectively, across all phenotypes. Individual phenotype validation showed that the algorithm categorizes patients particularly well but has challenges with patients that require ≥2 management strategies. Conclusions Our proposed computable phenotyping algorithm for patients with acute respiratory failure effectively identifies patients for therapy-focused research regardless of admission diagnosis or comorbidities and allows for management strategy comparisons across populations of interest.more » « less
-
Abstract Phenotypic plasticity can play an important role in the ability of animals to tolerate environmental stress, but the nature and magnitude of plastic responses are often specific to the developmental timing of exposure. Here, we examine changes in gene expression in the diaphragm of highland deer mice (Peromyscus maniculatus) in response to hypoxia exposure at different stages of development. In highland deer mice, developmental plasticity in diaphragm function may mediate changes in several respiratory traits that influence aerobic metabolism and performance under hypoxia. We generated RNAseq data from diaphragm tissue of adult deer mice exposed to (1) life‐long hypoxia (before conception to adulthood), (2) post‐natal hypoxia (birth to adulthood), (3) adult hypoxia (6–8 weeks only during adulthood) or (4) normoxia. We found five suites of co‐regulated genes that are differentially expressed in response to hypoxia, but the patterns of differential expression depend on the developmental timing of exposure. We also identified four transcriptional modules that are associated with important respiratory traits. Many of the genes in these transcriptional modules bear signatures of altitude‐related selection, providing an indirect line of evidence that observed changes in gene expression may be adaptive in hypoxic environments. Our results demonstrate the importance of developmental stage in determining the phenotypic response to environmental stressors.more » « less
-
Alysson Roncally Silva Carvalho (Ed.)Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn’s cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales.more » « less
An official website of the United States government
