Abstract Severe diaphragm dysfunction can lead to respiratory failure and to the need for permanent mechanical ventilation. Yet permanent tethering to a mechanical ventilator through the mouth or via tracheostomy can hinder a patient’s speech, swallowing ability and mobility. Here we show, in a porcine model of varied respiratory insufficiency, that a contractile soft robotic actuator implanted above the diaphragm augments its motion during inspiration. Synchronized actuation of the diaphragm-assist implant with the native respiratory effort increased tidal volumes and maintained ventilation flow rates within the normal range. Robotic implants that intervene at the diaphragm rather than at the upper airway and that augment physiological metrics of ventilation may restore respiratory performance without sacrificing quality of life.
more »
« less
An organosynthetic soft robotic respiratory simulator
In this work, we describe a benchtop model that recreates the motion and function of the diaphragm using a combination of advanced robotic and organic tissue. First, we build a high-fidelity anthropomorphic model of the diaphragm using thermoplastic and elastomeric material based on clinical imaging data. We then attach pneumatic artificial muscles to this elastomeric diaphragm, pre-programmed to move in a clinically relevant manner when pressurized. By inserting this diaphragm as the divider between two chambers in a benchtop model—one representing the thorax and the other the abdomen—and subsequently activating the diaphragm, we can recreate the pressure changes that cause lungs to inflate and deflate during regular breathing. Insertion of organic lungs in the thoracic cavity demonstrates this inflation and deflation in response to the pressures generated by our robotic diaphragm. By tailoring the input pressures and timing, we can represent different breathing motions and disease states. We instrument the model with multiple sensors to measure pressures, volumes, and flows and display these data in real-time, allowing the user to vary inputs such as the breathing rate and compliance of various components, and so they can observe and measure the downstream effect of changing these parameters. In this way, the model elucidates fundamental physiological concepts and can demonstrate pathology and the interplay of components of the respiratory system. This model will serve as an innovative and effective pedagogical tool for educating students on respiratory physiology and pathology in a user-controlled, interactive manner. It will also serve as an anatomically and physiologically accurate testbed for devices or pleural sealants that reside in the thoracic cavity, representing a vast improvement over existing models and ultimately reducing the requirement for testing these technologies in animal models. Finally, it will act as an impactful visualization tool for educating and engaging the broader community.
more »
« less
- Award ID(s):
- 1847541
- PAR ID:
- 10584260
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Bioengineering
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2473-2877
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Some marine birds and mammals can perform dives of extraordinary duration and depth. Such dive performance is dependent on many factors, including total body oxygen (O2) stores. For diving penguins, the respiratory system (air sacs and lungs) constitutes 30-50% of the total body O2 store. To better understand the role and mechanism of parabronchial ventilation and O2 utilization in penguins both on the surface and during the dive, we examined air sac partial pressures of O2 (PO2) in emperor penguins (Aptenodytes forsteri) equipped with backpack PO2 recorders. Cervical air sac PO2s at rest were lower than in other birds, while the cervical air sac to posterior thoracic air sac PO2 difference was larger. Pre-dive cervical air sac PO2s were often greater than those at rest, but had a wide range and were not significantly different from those at rest. The maximum respiratory O2 store and total body O2 stores calculated with representative anterior and posterior air sac PO2 data did not differ from prior estimates. The mean calculated anterior air sac O2 depletion rate for dives up to 11 min was approximately one-tenth that of the posterior air sacs. Low cervical air sac PO2s at rest may be secondary to a low ratio of parabronchial ventilation to parabronchial blood O2 extraction. During dives, overlap of simultaneously recorded cervical and posterior thoracic air sac PO2 profiles supported the concept of maintenance of parabronchial ventilation during a dive by air movement through the lungs.more » « less
-
A Doppler radar measurement of respiration is a well-known technique for assessment of respiratory rates and patterns. Torso respiratory motion is a result of thoracic and abdominal motion during normal breathing. These two contributions produce breathing patterns that are important to understand for assessing respiratory health and sleep disorders. Doppler radar systems often use an antenna beam that illuminates the whole torso, effectively combining the contributions from the two regions. This paper presents theory, simulation, and measurement results that analyze and validate thorax and abdomen motion contributions in Doppler radar respiratory measurement.more » « less
-
Doppler radar remote sensing of torso kinematics can provide an indirect measure of cardiopulmonary function. Motion at the human body surface due to heart and lung activity has been successfully used to characterize such measures as respiratory rate and depth, obstructive sleep apnea, and even the identity of an individual subject. For a sedentary subject, Doppler radar can track the periodic motion of the portion of the body moving as a result of the respiratory cycle as distinct from other extraneous motions that may occur, to provide a spatial temporal displacement pattern that can be combined with a mathematical model to indirectly assess quantities such as tidal volume, and paradoxical breathing. Furthermore, it has been demonstrated that even healthy respiratory function results in distinct motion patterns between individuals that vary as a function of relative time and depth measures over the body surface during the inhalation/exhalation cycle. Potentially, the biomechanics that results in different measurements between individuals can be further exploited to recognize pathology related to lung ventilation heterogeneity and other respiratory diagnostics.more » « less
-
---- (Ed.)The anatomy and function of the respiratory systems of penguins are reviewed in relation to gas exchange and minimization of the risks of pulmonary barotrauma, decompression sickness and nitrogen narcosis during dives. Topics include available lung morphology and morphometry, respiratory air volumes determined with different techniques, review of possible physiological and biomechanical mechanisms of baroprotection, calculations of baroprotection limits and review of air sac and arterial partial pressure of oxygen (PO2) profiles in relation to movement of air during breathing and during dives. Limits for baroprotection to 200, 400 and 600 m in Adélie, king and emperor penguins, respectively, would require complete transfer of air sac air and reductions in the combined tracheobronchial tree—parabronchial volume of 24% in Adélie, 53% in king penguins and 76% in emperor penguins. Air sac and arterial PO2profiles at rest and during surface activity were consistent with unidirectional air flow through the lungs. During dives, PO2profiles were more complex, but were consistent with compression of air sac air into the parabronchi and air capillaries with or without additional air mixing induced by potential differential air sac pressures generated by wing movements. This article is part of the theme issue ‘The biology of the avian respiratory system’.more » « less
An official website of the United States government
