skip to main content


Title: Implications of the loess record for Holocene climate and human settlement in Heye Catchment, Jiuzhaigou, eastern Tibetan Plateau, Sichuan, China
Abstract We examine the Holocene loess record in the Heye Catchment on the margins of the Tibetan Plateau (TP) and China Loess Plateau (CLP) to determine: the region to which the Heye Catchment climate is more similar; temporal change in wind strength; and modification of the loess record by mass wasting and human activity. Luminescence and radiocarbon dating demonstrate loess deposited in two periods: >11–8.6 ka and <5.1 ka. The 8.6–5.1 ka depositional hiatus, which coincides with the Mid-Holocene Climatic Optimum, is more similar to the loess deposition cessation in the TP than to the loess deposition deceleration in the CLP. Grain-size analysis suggests the Heye loess is a mixture of at least three different grain-size distributions and that it may derive from multiple sources. A greater proportion of coarse sediments in the older loess may indicate stronger winds compared with the more recent depositional period. Gravel incorporated into younger loess most likely comes from bedrock exposed in slump scarps. Human occupation of the catchment, for which the earliest evidence is 3.4 ka, postdates the onset of slumping; thus the slumps may have created a livable environment for humans.  more » « less
Award ID(s):
1745405
NSF-PAR ID:
10385156
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Quaternary Research
ISSN:
0033-5894
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Significant sediment flux and deposition in a sedimentary system are influenced by climate changes, tectonics, lithology, and the sedimentary system's internal dynamics. Identifying the timing of depositional periods from stratigraphic records is a first step to critically evaluate the controls of sediment flux and deposition. Here, we show that ages of single‐grain K‐feldspar luminescence subpopulations may provide information on the timing of previous major depositional periods. We analyzed 754 K‐feldspar single‐grains from 17 samples from the surface to ∼9 m‐depth in a trench located downstream of the Mission Creek catchment. Single‐grain luminescence subpopulation ages significantly overlap at least eight times since ∼12.0 ka indicating a common depositional history. These depositional periods correspond reasonably well with the Holocene intervals of wetter than average climate conditions based on hydroclimatic proxies from nearby locations. Our findings imply a first‐order climatic control on sediment depositional history in southern California on a millennial timescale.

     
    more » « less
  2. Grain size analysis is an essential tool for classifying sedimentary environments. The main aim of the current research is to use granulometric analysis of the Bhikiysain palaeolake sequence along the Ramganga river to describe changes in the depositional environment within the lake during the late Quaternary. The granulometric analysis was conducted using a laser particle size analyser on 32 samples, collected at 10 cm intervals in a vertical palaeolake profile, at Bhikiyasain (Ramganga Basin). The results of the grain-size analysis indicate that the size distribution of the sediment is unimodal. The unimodal size distribution of the sediment suggests that the sediment was supplied via fluvial action. The Bhikiyasain Basin (29°43.106’ N; 79°15.682’ E) underwent tectonic activity around 44 ka, resulting in the ponding of the Ramganga river and the formation of palaeolake deposit. Based on grain size analysis, variation in the colour and lithofacies, the entire profile has been divided into 6 different zones (zones 1 to 6). The silt has the highest concentration in all the zones except for zones 1 and 3. Zones with high silt concentration are inferred to represent low energy depositional environments during the time of deposition. The higher amount of sand concentration in zones 1 and 3 represent higher energy depositional environment. For the whole profile, the sorting of the samples varies between 1.1 and 2.0, indicating poor sorting of the samples. The poorly sorted sediment in all six zones represents limited transportation of sediment from the catchment and also suggests that the sediment was deposited in a low energy environment. The ternary plots also signify the dominance of silt followed by sand and clay. The skewness values range from 0.1 to 0.5 which indicates that the samples are symmetrical to very finely skewed. Variability in the skewness values may be due to changes in the intensity of wind and hydrodynamic conditions of the lake. The kurtosis value ranges from 0.9-1.4, indicating the samples are platykurtic, leptokurtic and mesokurtic in nature. Variability in the kurtosis may be due to changes in the flow characteristics of the depositional medium. 
    more » « less
  3. Abstract

    Here we present, to date, the highest‐resolved (~5 years) and most precisely dated Holocene monsoon climate reconstruction for the western Chinese Loess Plateau based on five replicated stalagmite δ18O records from Wuya Cave, eastern Gansu, China. Our record suggests the wettest period occurred between 10,500 and 6,600 a BP in this region. After this period, the amplitude of Asian summer monsoon decadal‐scale variability progressively increased likely in response to increasing ENSO frequency since the middle Holocene. Our study reveals similar asymmetric centennial‐scale double‐plunging structures of the 8.2, 5.5, and 2.8 ka events in the western Chinese Loess Plateau, suggesting a possible role of solar activity whose impact was amplified around 8.2 ka BP by the meltwater flood. In contrast, the 4.2 ka event exhibit gradually declining monsoon rainfall with centennial‐ to decadal‐scale fluctuations.

     
    more » « less
  4. Abstract

    Quantifying variability in, and identifying the mechanisms behind, East Asian dust production and transport across the last several million years is essential for constraining future dust emissions and deposition. Our current understanding of East Asian dust dynamics through the Quaternary is primarily limited to low‐resolution records from the North Pacific Ocean, those from the Chinese Loess Plateau (CLP), and paleoenvironmental reconstructions from arid basins. All are susceptible to sediment winnowing and focusing as well as input of poorly constrained or unidentified non‐dust detrital material. To avoid these limitations, we examine high‐resolution, constant flux proxy‐derived dust fluxes from the North Pacific and find evidence for higher glacial dust fluxes in the late Pliocene‐early Pleistocene compared to the late Pleistocene‐Holocene. Our results suggest decreasing dust transported to the mid‐latitude North Pacific Ocean from eastern Asia across the Quaternary. This observation is ostensibly at odds with previous dust records from marine sediments and the CLP, and with the perception of higher East Asian dust production and transport during the late Pleistocene associated with the amplification of glaciations. We provide three possible scenarios to describe the ∼2,700‐ky evolution of eastern Asia glacial dust dynamics, and discuss them in the context of sediment production, availability, and atmospheric circulation. Our data and proposed driving mechanisms not only raise questions about the framework typically used to interpret dust archives from East Asia and the North Pacific Ocean, but also provide a roadmap for hypothesis testing and future work necessary to produce better‐constrained records of paleo‐dust fluxes.

     
    more » « less
  5. Abstract. Chronologies of glacier deposits in the Transantarctic Mountains provide important constraints on grounding-line retreat during the last deglaciation in the Ross Sea. However, between Beardmore Glacier and Ross Island – a distance of some 600 km – the existing chronologies are generally sparse and far from the modern grounding line, leaving the past dynamics of this vast region largely unconstrained. We present exposure ages of glacial deposits at three locations alongside the Darwin–Hatherton Glacier System – including within 10 km of the modern grounding line – that record several hundred meters of Late Pleistocene to Early Holocene thickening relative to present. As the ice sheet grounding line in the Ross Sea retreated, Hatherton Glacier thinned steadily from about 9 until about 3 ka. Our data are equivocal about the maximum thickness and Mid-Holocene to Early Holocene history at the mouth of Darwin Glacier, allowing for two conflicting deglaciation scenarios: (1) ∼500 m of thinning from 9 to 3 ka, similar to Hatherton Glacier, or (2) ∼950 m of thinning, with a rapid pulse of ∼600 m thinning at around 5 ka. We test these two scenarios using a 1.5-dimensional flowband model, forced by ice thickness changes at the mouth of Darwin Glacier and evaluated by fit to the chronology of deposits at Hatherton Glacier. The constraints from Hatherton Glacier are consistent with the interpretation that the mouth of Darwin Glacier thinned steadily by ∼500 m from 9 to 3 ka. Rapid pulses of thinning at the mouth of Darwin Glacier are ruled out by the data at Hatherton Glacier. This contrasts with some of the available records from the mouths of other outlet glaciers in the Transantarctic Mountains, many of which thinned by hundreds of meters over roughly a 1000-year period in the Early Holocene. The deglaciation histories of Darwin and Hatherton glaciers are best matched by a steady decrease in catchment area through the Holocene, suggesting that Byrd and/or Mulock glaciers may have captured roughly half of the catchment area of Darwin and Hatherton glaciers during the last deglaciation. An ensemble of three-dimensional ice sheet model simulations suggest that Darwin and Hatherton glaciers are strongly buttressed by convergent flow with ice from neighboring Byrd and Mulock glaciers, and by lateral drag past Minna Bluff, which could have led to a pattern of retreat distinct from other glaciers throughout the Transantarctic Mountains. 
    more » « less