skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local chemical origin of ferroelectric behavior in wurtzite nitrides
Ferroelectricity enables key modern technologies from non-volatile memory to precision ultrasound. The first known wurtzite ferroelectric Al 1− x Sc x N has recently attracted attention because of its robust ferroelectricity and Si process compatibility, but the chemical and structural origins of ferroelectricity in wurtzite materials are not yet fully understood. Here we show that ferroelectric behavior in wurtzite nitrides has local chemical rather than extended structural origin. According to our coupled experimental and computational results, the local bond ionicity and ionic displacement, rather than simply the change in the lattice parameter of the wurtzite structure, is key to controlling the macroscopic ferroelectric response in these materials. Across gradients in composition and thickness of 0 < x < 0.35 and 140–260 nm, respectively, in combinatorial thin films of Al 1− x Sc x N, the pure wurtzite phase exhibits a similar c / a ratio regardless of the Sc content due to elastic interaction with neighboring crystals. The coercive field and spontaneous polarization significantly decrease with increasing Sc content despite this invariant c / a ratio. This property change is due to the more ionic bonding nature of Sc–N relative to the more covalent Al–N bonds, and the local displacement of the neighboring Al atoms caused by Sc substitution, according to DFT calculations. Based on these insights, ionicity engineering is introduced as an approach to reduce coercive field of Al 1− x Sc x N for memory and other applications and to control ferroelectric properties in other wurtzites.  more » « less
Award ID(s):
2119281
PAR ID:
10385183
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
10
Issue:
46
ISSN:
2050-7526
Page Range / eLocation ID:
17557 to 17566
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AlN-based alloys find widespread application in high-power microelectronics, optoelectronics, and electromechanics. The realization of ferroelectricity in wurtzite AlN-based heterostructural alloys has opened up the possibility of directly integrating ferroelectrics with conventional microelectronics based on tetrahedral semiconductors, such as Si, SiC, and III–Vs, enabling compute-in-memory architectures, high-density data storage, and more. The discovery of AlN-based wurtzite ferroelectrics has been driven to date by chemical intuition and empirical explorations. Here, we demonstrate the computationally-guided discovery and experimental demonstration of new ferroelectric wurtzite Al1−xGdxN alloys. First-principles calculations indicate that the minimum energy pathway for switching changes from a collective to an individual switching process with a lower overall energy barrier, at a rare-earth fraction x with x > 0.10–0.15. Experimentally, ferroelectric switching is observed at room temperature in Al1−xGdxN films with x > 0.12, which strongly supports the switching mechanisms in wurtzite ferroelectrics proposed previously [Lee et al., Sci. Adv. 10, eadl0848 (2024)]. This is also the first demonstration of ferroelectricity in an AlN-based alloy with a magnetic rare-earth element, which could pave the way for additional functionalities such as multiferroicity and opto-ferroelectricity in this exciting class of AlN-based materials. 
    more » « less
  2. Abstract This study employs a data‐driven machine learning approach to investigate specific ferroelectric properties of Al1−xScxN thin films, targeting their application in next‐generation nonvolatile memory (NVM) devices. This approach analyzes a vast design space, encompassing over a million data points, to predict a wide range of coercive field values that are crucial for optimizing Al1−xScxN‐based NVM devices. We evaluated seven machine learning models to predict the coercive field across a range of conditions, identifying the random forest algorithm as the most accurate, with a testR2value of 0.88. The model utilized five key features: film thickness, measurement frequency, operating temperature, scandium concentration, and growth temperature to predict the design space. Our analysis spans 13 distinct scandium concentrations and 13 growth temperatures, encompassing thicknesses from 9–1000 nm, frequencies from 1 to 100 kHz, and operating temperatures from 273 to 700 K. The predictions revealed dominant coercive field values between 3.0 and 4.5 MV/cm, offering valuable insights for the precise engineering of Al1−xScxN‐based NVM devices. This work underscores the potential of machine learning in guiding the development of advanced ferroelectric materials with tailored properties for enhanced device performance. 
    more » « less
  3. The 2019 report of ferroelectricity in (Al,Sc)N [Fichtner et al., J. Appl. Phys. 125, 114103 (2019)] broke a long-standing tradition of considering AlN the textbook example of a polar but non-ferroelectric material. Combined with the recent emergence of ferroelectricity in HfO2-based fluorites [Böscke et al., Appl. Phys. Lett. 99, 102903 (2011)], these unexpected discoveries have reinvigorated studies of integrated ferroelectrics, with teams racing to understand the fundamentals and/or deploy these new materials—or, more correctly, attractive new capabilities of old materials—in commercial devices. The five years since the seminal report of ferroelectric (Al,Sc)N [Fichtner et al., J. Appl. Phys. 125, 114103 (2019)] have been particularly exciting, and several aspects of recent advances have already been covered in recent review articles [Jena et al., Jpn. J. Appl. Phys. 58, SC0801 (2019); Wang et al., Appl. Phys. Lett. 124, 150501 (2024); Kim et al., Nat. Nanotechnol. 18, 422–441 (2023); and F. Yang, Adv. Electron. Mater. 11, 2400279 (2024)]. We focus here on how the ferroelectric wurtzites have made the field rethink domain walls and the polarization reversal process—including the very character of spontaneous polarization itself—beyond the classic understanding that was based primarily around perovskite oxides and extended to other chemistries with various caveats. The tetrahedral and highly covalent bonding of AlN along with the correspondingly large bandgap lead to fundamental differences in doping/alloying, defect compensation, and charge distribution when compared to the classic ferroelectric systems; combined with the unipolar symmetry of the wurtzite structure, the result is a class of ferroelectrics that are both familiar and puzzling, with characteristics that seem to be perfectly enabling and simultaneously nonstarters for modern integrated devices. The goal of this review is to (relatively) quickly bring the reader up to speed on the current—at least as of early 2025—understanding of domains and defects in wurtzite ferroelectrics, covering the most relevant work on the fundamental science of these materials as well as some of the most exciting work in early demonstrations of device structures. 
    more » « less
  4. Abstract The piezoelectric and ferroelectric applications of heterovalent ternary materials are not well explored. Epitaxial MgSiN2films are grown at 600 °C on (111)Pt//(001)Al2O3substrates by the reactive sputtering method using metallic Mg and Si under the N2atmosphere. Detailed X‐ray diffraction measurements and transmission electron microscopy observations revealed that the epitaxially grown films on the substrates have a hexagonal wurtzite structure withc‐axis out‐of‐plane orientation. The random occupation of this structure by Mg and Si differs from that of the previously reported structure in which these two cations periodically occupy the cationic sites. However, the lattice spacings closely approximate those that are previously reported, irrespective of the ordering, and they are almost comparable with those of (Al0.8Sc0.2)N. The wide bandgap of >5.0 eV in deposited MgSiN2is compatible with that of AlN and suggests durability against the application of strong external electric fields, possibly to induce polarization switching. In addition, MgSiN2is shown to have piezoelectric properties with an effectived33value of 2.3 pm V−1for the first time. This work demonstrates the compositional expansion of hexagonal wurtzite to heterovalent ternary nitrides for novel piezoelectric materials, whose ferroelectricity is expected. 
    more » « less
  5. We report the growth of epitaxial wurtzite AlScN thin films on Si (111) substrates with a wide range of Sc concentrations using ultra-high vacuum reactive sputtering. Sc alloying in AlN enhances piezoelectricity and induces ferroelectricity, and epitaxial thin films facilitate systematic structure-based investigations of this important and emerging class of materials. Two main effects are observed as a function of increasing Sc concentration. First, increasing crystalline disorder is observed together with a structural transition from wurtzite to rocksalt at ∼30 at% Sc. Second, nanoscale compositional segregation consistent with spinodal decomposition occurs at intermediate compositions, before the wurtzite to rocksalt phase boundary is reached. Lamellar features arising from composition fluctuations are correlated with polarization domains in AlScN, suggesting that composition segregation can influence ferroelectric properties. The present results provide a route to the creation of single crystal AlScN films on Si (111), as well as a means for self-assembled composition modulation. 
    more » « less