skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: No evidence of predicted phenotypic changes after hurricane disturbance in a shade-specialist Caribbean anole
Extreme climatic events (ECEs) such as hurricanes have been hypothesized to be a major driving force of natural selection. Recent studies argue that, following strong hurricane disturbance, Anolis lizards in the Caribbean undergo selection for traits such as longer forelimbs or smaller body sizes that improve their clinging ability to their substrates increasing their chances of surviving hurricane wind gusts. Some authors challenge the generalization of this hypothesis arguing that other mechanisms may explain these phenotypic changes or that they may not necessarily be generalizable across systems. To address this issue, we compared body size and relative forelimb length of Anolis gundlachi , a trunk–ground anole living in closed-canopy forests in Puerto Rico, before, four months after, and 15 months after Hurricanes Irma and Maria in 2017. Overall, our results show no clear evidence of a temporal decrease in body size or increase forelimb length (relative to body size) challenging the generalizability of the clinging ability hypothesis. Understanding how animals adapt to ECE is an emerging field. Still, we are quickly learning that this process is complex and nuanced.  more » « less
Award ID(s):
1754401 1831952
PAR ID:
10385210
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biology Letters
Volume:
18
Issue:
8
ISSN:
1744-957X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Extreme climate events such as droughts, cold snaps, and hurricanes can be powerful agents of natural selection, producing acute selective pressures very different from the everyday pressures acting on organisms. However, it remains unknown whether these infrequent but severe disruptions are quickly erased by quotidian selective forces, or whether they have the potential to durably shape biodiversity patterns across regions and clades. Here, we show that hurricanes have enduring evolutionary impacts on the morphology of anoles, a diverse Neotropical lizard clade. We first demonstrate a transgenerational effect of extreme selection on toepad area for two populations struck by hurricanes in 2017. Given this short-term effect of hurricanes, we then asked whether populations and species that more frequently experienced hurricanes have larger toepads. Using 70 y of historical hurricane data, we demonstrate that, indeed, toepad area positively correlates with hurricane activity for both 12 island populations of Anolis sagrei and 188 Anolis species throughout the Neotropics. Extreme climate events are intensifying due to climate change and may represent overlooked drivers of biogeographic and large-scale biodiversity patterns. 
    more » « less
  2. Predicting the responses of animals to environmental changes is a fundamental goal of ecology and is necessary for conservation and management of species. While most studies focus on relatively gradual changes, extreme events may have lasting impacts on populations. Animals respond to major disturbances such as hurricanes by seeking shelter, migrating, or they may fail to respond appropriately. We assessed the effects of Hurricane Irma in 2017 on the behavior and survival of juvenile bull sharks (Carcharhinus leucas) within a nursery of the Florida coastal Everglades using long-term acoustic telemetry monitoring. Most of our tagged sharks (n = 14) attempted to leave the shallow waters of the Shark River Estuary before the hurricane strike, but individuals varied in the timing and success of their movements. Eight bull sharks left within hours or days before the hurricane, but three left more than a week in advance. Nine of 11 bull sharks (~ 82%) eventually returned to the array within weeks or months of the storm. Six of these returning individuals were detected in a different coastal array in nearshore waters ca. 80 km away from the mouth of the estuary during their absence. The remaining three bull sharks moved downstream relatively late (after the hurricane) and may have died. We used binomial generalized linear mixed models to estimate the probability of presence within the array as a function of several environmental variables. Departure from the array was predicted by declining barometric pressure, increasing rate of change in pressure, and potentially fluctuations in river stage. Juvenile bull sharks may weigh multiple environmental cues, perceived predation risk, their own physical size, and shifting prey resources when making decisions during and after hurricanes. 
    more » « less
  3. Abstract Hurricanes cause dramatic changes to forests by opening the canopy and depositing debris onto the forest floor. How invasive rodent populations respond to hurricanes is not well understood, but shifts in rodent abundance and foraging may result from scarce fruit and seed resources that follow hurricanes. We conducted studies in a wet tropical forest in Puerto Rico to better understand how experimental (canopy trimming experiment) and natural (Hurricane Maria) hurricane effects alter populations of invasive rodents (Rattus rattus[rats] andMus musculus[mice]) and their foraging behaviors. To monitor rodent populations, we used tracking tunnels (inked and baited cards inside tunnels enabling identification of animal visitors' footprints) within experimental hurricane plots (arborist trimmed in 2014) and reference plots (closed canopy forest). To assess shifts in rodent foraging, we compared seed removal of two tree species (Guarea guidoniaandPrestoea acuminata) between vertebrate‐excluded and free‐access treatments in the same experimental and reference plots, and did so 3 months before and 9 months after Hurricane Maria (2017). Trail cameras were used to identify animals responsible for seed removal. Rat incidences generated from tracking tunnel surveys indicated that rat populations were not significantly affected by experimental or natural hurricanes. Before Hurricane Maria there were no mice in the forest interior, yet mice were present in forest plots closest to the road after the hurricane, and their forest invasion coincided with increased grass cover resulting from open forest canopy. Seed removal ofGuareaandPrestoeaacross all plots was rat dominated (75%–100% rat‐removed) and was significantly less after than before Hurricane Maria. However, following Hurricane Maria, the experimental hurricane treatment plots of 2014 had 3.6 times greater seed removal by invasive rats than did the reference plots, which may have resulted from rats selecting post‐hurricane forest patches with greater understory cover for foraging. Invasive rodents are resistant to hurricane disturbance in this forest. Predictions of increased hurricane frequency from expected climate change should result in forest with more frequent periods of grassy understories and mouse presence, as well as with heightened rat foraging for fruit and seed in preexisting areas of disturbance. 
    more » « less
  4. Body size is often hypothesized to facilitate or constrain morphological diversity in the cranial, appendicular, and axial skeletons. However, how overall body shape scales with body size ( i.e. , body shape allometry) and whether these scaling patterns differ between ecological groups remains poorly investigated. Here, we test whether and how the relationships between body shape, body size, and limb lengths differ among species with different locomotor specializations, and describe the underlying morphological components that contribute to body shape evolution among squirrel (Sciuridae) ecotypes. We quantified the body size and shape of 87 squirrel species from osteological specimens held at museum collections. Using phylogenetic comparative methods, we first found that body shape and its underlying morphological components scale allometrically with body size, but these allometric patterns differ among squirrel ecotypes: chipmunks and gliding squirrels exhibited more elongate bodies with increasing body sizes whereas ground squirrels exhibited more robust bodies with increasing body size. Second, we found that only ground squirrels exhibit a relationship between forelimb length and body shape, where more elongate species exhibit relatively shorter forelimbs. Third, we found that the relative length of the ribs and elongation or shortening of the thoracic region contributes the most to body shape evolution across squirrels. Overall, our work contributes to the growing understanding of mammalian body shape evolution and how it is influenced by body size and locomotor ecology, in this case from robust subterranean to gracile gliding squirrels. 
    more » « less
  5. Forecasting hurricanes is critically important for mitigating their devastating impacts caused by wind damage, storm surges, and flooding. Despite remarkable advancements in numerical weather prediction (NWP) models, such as the Weather Research and Forecasting (WRF) model, accurate hurricane forecasts remain challenging likely due to inaccurate physical parameterizations of complex dynamics of these storms. One major issue of these models is related to their Planetary Boundary Layer (PBL) schemes, which are not typically designed for hurricane flows with strong rotation. Previous studies have shown that the existing PBL schemes of hurricane simulations are often overly dissipative, leading to underestimations of the storm intensity (Matak and Momen 2023; Romdhani et al. 2022). Our recent research (Khondaker and Momen 2024) demonstrated that reducing diffusion in these models improved the hurricane’s intensity and size forecasts by more than ~30% on average in four considered major hurricanes. This reduced diffusion is due to the strong rotational nature of hurricanes, which suppresses turbulence and produces smaller eddies compared to regular PBLs (Momen et al. 2021). While prior studies showed that decreasing the vertical diffusion significantly improves major hurricane intensity forecasts, they mostly relied on simplified and often invariable adjustments of vertical diffusion such as multiplying it by a constant coefficient. The objective of this study is to address this issue by introducing a rotation-based variable adjustment of diffusion to account for the strong rotational nature of tropical cyclone (TC) dynamics. To this end, we will present multiple real strong and weak hurricane simulations using the Advanced Research WRF (ARW) model in the US. We modified the vertical eddy diffusivity based on the relative vorticity to accommodate the rotational dynamics of TCs in PBL schemes. While the default model significantly underpredicts hurricane intensity, our new adjustments outperform the default schemes for these strong hurricanes (see, e.g., attached fig. a), with notable improvements in track and minimum sea level pressure accuracy. This modification also remarkably increases the inflow in hurricanes compared to default models and leads to the intensification of the TC vortex (see, e.g., attached fig. b,c). Our newly adjusted model matched more closely with dropsonde, and satellite observations compared to the default WRF’s PBL schemes. These modifications to the PBL schemes make them more physics-based adjustments compared to previous treatments, offering valuable insights for improving hurricane forecasts in NWP models. References: Khondaker, M. H., and M. Momen, 2024: Improving hurricane intensity and streamflow forecasts in coupled hydro-meteorological simulations by analyzing precipitation and boundary layer schemes. J Hydrometeorol, https://doi.org/10.1175/JHM-D-23-0153.1. Matak, L., and M. Momen, 2023: The Role of Vertical Diffusion Parameterizations in the Dynamics and Accuracy of Simulated Intensifying Hurricanes. Boundary Layer Meteorology, https://doi.org/10.1007/s10546-023-00818-w. Momen, M., M. B. Parlange, and M. G. Giometto, 2021: Scrambling and Reorientation of Classical Atmospheric Boundary Layer Turbulence in Hurricane Winds. Geophysical Research Letters, 48, https://doi.org/10.1029/2020GL091695. Romdhani, O., J. A. Zhang, and M. Momen, 2022: Characterizing the Impacts of Turbulence Closures on Real Hurricane Forecasts: A Comprehensive Joint Assessment of Grid Resolution, Horizontal Turbulence Models, and Horizontal Mixing Length. Journal of Advanced Modeling Earth System, 14, https://doi.org/10.1029/2021ms002796. 
    more » « less