skip to main content


Title: cyp21a2 Knockout Tadpoles Survive Metamorphosis Despite Low Corticosterone
Abstract Corticosteroids are so vital for organ maturation that reduced corticosteroid signaling during postembryonic development causes death in terrestrial vertebrates. Indeed, death occurs at metamorphosis in frogs lacking proopiomelanocortin (pomc) or the glucocorticoid receptor (GR; nr3c1). Some residual corticosteroids exist in pomc mutants to activate the wild-type (WT) GR and mineralocorticoid receptor (MR), and the elevated corticosteroids in GR mutants may activate MR. Thus, we expected a more severe developmental phenotype in tadpoles with inactivation of 21-hydroxylase, which should eliminate all interrenal corticosteroid biosynthesis. Using CRISPR/Cas9 in Xenopus tropicalis, we produced an 11-base pair deletion in cyp21a2, the gene encoding 21-hydroxylase. Growth and development were delayed in cyp21a2 mutant tadpoles, but unlike the other frog models, they survived metamorphosis. Consistent with an absence of 21-hydroxylase, mutant tadpoles had a 95% reduction of aldosterone in tail tissue, but they retained some corticosterone (∼40% of WT siblings), an amount, however, too low for survival in pomc mutants. Decreased corticosteroid signaling was evidenced by reduced expression of corticosteroid-response gene, klf9, and by impaired negative feedback in the hypothalamus-pituitary-interrenal axis with higher messenger RNA expression levels of crh, pomc, star, and cyp11b2 and an approximately 30-fold increase in tail content of progesterone. In vitro tail-tip culture showed that progesterone can transactivate the frog GR. The inadequate activation of GR by corticosterone in cyp21a2 mutants was likely compensated for by sufficient corticosteroid signaling from other GR ligands to allow survival through the developmental transition from aquatic to terrestrial life.  more » « less
Award ID(s):
2035732
NSF-PAR ID:
10385255
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Endocrinology
Volume:
164
Issue:
1
ISSN:
1945-7170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Corticosteroids are critical for development and for mediating stress responses across diverse vertebrate taxa. Study of frog metamorphosis has made significant breakthroughs in our understanding of corticosteroid signaling during development in non-mammalian vertebrate species. However, lack of adequate corticosterone (CORT) response genes in tadpoles make identification and quantification of CORT responses challenging. Here, we characterized a CORT-response genefrzb(frizzled related protein) previously identified inXenopus tropicalistadpole tail skin by an RNA-seq study. We validated the RNA-seq results that CORT and not thyroid hormone inducesfrzbin the tails using quantitative PCR. Further, maximumfrzbexpression was achieved by 100-250 nM CORT within 12-24 hours.frzbis not significantly induced in the liver and brain in response to 100 nM CORT. We also found no change infrzbexpression across natural metamorphosis when endogenous CORT levels peak. Surprisingly,frzbis only induced by CORT inX. tropicalistails and not inXenopus laevistails. The exact downstream function of increasedfrzbexpression in tails in response to CORT is not known, but the specificity of hormone response and its high mRNA expression levels in the tail renderfrzba useful marker of exogenous CORT-response independent of thyroid hormone for exogenous hormone treatments andin-vivoendocrine disruption studies.

     
    more » « less
  2. Abstract

    It is unknown whether and how osmoregulation is controlled by corticosteroid signaling in the phylogenetically basal vertebrate group Agnatha, including lampreys and hagfishes. It is known that a truncated steroid biosynthetic pathway in lampreys produces two predominant circulating corticosteroids, 11-deoxycortisol (S) and 11-deoxycorticosterone (DOC). Furthermore, lampreys express only a single, ancestral corticosteroid receptor (CR). Whether S and/or DOC interact with the CR to control osmoregulation in lampreys is still unknown. We examined the role of the endogenous corticosteroids in vivo and ex vivo in sea lamprey (Petromyzon marinus) during the critical metamorphic period during which sea lamprey increase osmoregulatory capacity and acquire seawater (SW) tolerance. We demonstrate in vivo that increases in circulating [S] and gill CR abundance are associated with increases in osmoregulatory capacity during metamorphosis. We further show that in vivo and ex vivo treatment with S increases activity and expression of gill active ion transporters and improves SW tolerance, and that only S (and not DOC) has regulatory control over active ion transport in the gills. Lastly, we show that the lamprey CR expresses an ancestral, spironolactone-as-agonist structural motif and that spironolactone treatment in vivo increases osmoregulatory capacity. Together, these results demonstrate that S is an osmoregulatory hormone in lamprey and that receptor-mediated discriminative corticosteroid regulation of hydromineral balance is an evolutionarily basal trait among vertebrates.

     
    more » « less
  3. Abstract Although the endocrine system likely plays an important role in orchestrating the transition to a migratory state, the specific mechanisms by which this occurs remain poorly understood. Changes in glucocorticoid signaling are one proposed mechanism that may be important in migratory transitions. Although previous work has focused on the role of changes in circulating glucocorticoids, another potential mechanism is changes in the expression of its cognate receptors. Here, we test this hypothesis by comparing mRNA expression of the genes for the mineralocorticoid receptor ( MR ) and glucocorticoid receptor ( GR ) in two brain regions implicated in the regulation of migratory behavior (the hippocampus and hypothalamus) in pine siskins ( Spinus pinus ) sampled before or after the transition to a spring nomadic migratory state. Compared to pre-migratory birds, migratory birds had body conditions more indicative of physiological preparations for migration (e.g., larger body mass), and greater levels of nocturnal migratory restlessness. However, we found no differences between pre-migratory and migratory birds in the expression of GR or MR mRNA in either the hippocampus or hypothalamus. Thus, differences in expression of receptors for glucocorticoids do not appear to underly the observed differences in physiology and behavior across a migratory transition. Taken together with previous results showing no change in circulating corticosterone levels during this transition, our findings provide no evidence for a role of glucocorticoid signaling in the spring migratory transition of this species. 
    more » « less
  4. TIR domains are NAD-degrading enzymes that function during immune signaling in prokaryotes, plants, and animals. In plants, most TIR domains are incorporated into intracellular immune receptors termed TNLs. In Arabidopsis, TIR-derived small molecules bind and activate EDS1 heterodimers, which in turn activate RNLs, a class of cation channel–forming immune receptors. RNL activation drives cytoplasmic Ca 2+ influx, transcriptional reprogramming, pathogen resistance, and host cell death. We screened for mutants that suppress an RNL activation mimic allele and identified a TNL, SADR1. Despite being required for the function of an autoactivated RNL, SADR1 is not required for defense signaling triggered by other tested TNLs. SADR1 is required for defense signaling initiated by some transmembrane pattern recognition receptors and contributes to the unbridled spread of cell death in lesion simulating disease 1 . Together with RNLs, SADR1 regulates defense gene expression at infection site borders, likely in a non-cell autonomous manner. RNL mutants that cannot sustain this pattern of gene expression are unable to prevent disease spread beyond localized infection sites, suggesting that this pattern corresponds to a pathogen containment mechanism. SADR1 potentiates RNL-driven immune signaling not only through the activation of EDS1 but also partially independently of EDS1. We studied EDS1-independent TIR function using nicotinamide, an NADase inhibitor. Nicotinamide decreased defense induction from transmembrane pattern recognition receptors and decreased calcium influx, pathogen growth restriction, and host cell death following intracellular immune receptor activation. We demonstrate that TIR domains can potentiate calcium influx and defense and are thus broadly required for Arabidopsis immunity. 
    more » « less
  5. On a changing planet, amphibians must respond to weather events shifting in frequency and magnitude, and to how those temperature and precipitation changes interact with other anthropogenic disturbances that modify amphibian habitat. To understand how drastic changes in environmental conditions affect wood frog tadpoles, we tested five temperature manipulations, including Ambient (water temperatures tracking daily air temperatures), Elevated (+ 3 °C above ambient), Nightly (removal of nightly lows), Spike (+ 6 °C above ambient every third week), and Flux (alternating ambient and + 3 °C weekly) crossed with Low Salt (specific conductivity: 109–207 μS-cm) and High Salt (1900–2000 μS-cm). We replicated each of the ten resulting treatments four times. High-salinity conditions produced larger metamorphs than low-salinity conditions. Tadpole survival was reduced only by the Spike treatment (P = 0.017). Elevated temperatures did not shorten larval periods; time to metamorphosis did not differ among temperature treatments (P = 0.328). We retained 135 recently metamorphosed frogs in outdoor terrestrial enclosures for 10 months to investigate larval environment carryover effects. Juvenile frogs grew larger in low-density terrestrial enclosures than high density (P = 0.015) and frogs from Ambient Low Salt larval conditions grew and survived better than frogs from manipulated larval conditions. Frogs from High Salt larval conditions had lower survival than frogs from Low Salt conditions. Our results suggest that anthropogenic disturbances to larval environmental conditions can affect both larval and post-metamorphic individuals, with detrimental carryover effects of high-salinity larval conditions not emerging until the juvenile life stage. 
    more » « less