skip to main content


Title: Migratory state is not associated with differences in neural glucocorticoid or mineralocorticoid receptor expression in pine siskins
Abstract Although the endocrine system likely plays an important role in orchestrating the transition to a migratory state, the specific mechanisms by which this occurs remain poorly understood. Changes in glucocorticoid signaling are one proposed mechanism that may be important in migratory transitions. Although previous work has focused on the role of changes in circulating glucocorticoids, another potential mechanism is changes in the expression of its cognate receptors. Here, we test this hypothesis by comparing mRNA expression of the genes for the mineralocorticoid receptor ( MR ) and glucocorticoid receptor ( GR ) in two brain regions implicated in the regulation of migratory behavior (the hippocampus and hypothalamus) in pine siskins ( Spinus pinus ) sampled before or after the transition to a spring nomadic migratory state. Compared to pre-migratory birds, migratory birds had body conditions more indicative of physiological preparations for migration (e.g., larger body mass), and greater levels of nocturnal migratory restlessness. However, we found no differences between pre-migratory and migratory birds in the expression of GR or MR mRNA in either the hippocampus or hypothalamus. Thus, differences in expression of receptors for glucocorticoids do not appear to underly the observed differences in physiology and behavior across a migratory transition. Taken together with previous results showing no change in circulating corticosterone levels during this transition, our findings provide no evidence for a role of glucocorticoid signaling in the spring migratory transition of this species.  more » « less
Award ID(s):
1755245
NSF-PAR ID:
10173995
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Animal Migration
Volume:
6
Issue:
1
ISSN:
2084-8838
Page Range / eLocation ID:
19 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Corticosteroids are so vital for organ maturation that reduced corticosteroid signaling during postembryonic development causes death in terrestrial vertebrates. Indeed, death occurs at metamorphosis in frogs lacking proopiomelanocortin (pomc) or the glucocorticoid receptor (GR; nr3c1). Some residual corticosteroids exist in pomc mutants to activate the wild-type (WT) GR and mineralocorticoid receptor (MR), and the elevated corticosteroids in GR mutants may activate MR. Thus, we expected a more severe developmental phenotype in tadpoles with inactivation of 21-hydroxylase, which should eliminate all interrenal corticosteroid biosynthesis. Using CRISPR/Cas9 in Xenopus tropicalis, we produced an 11-base pair deletion in cyp21a2, the gene encoding 21-hydroxylase. Growth and development were delayed in cyp21a2 mutant tadpoles, but unlike the other frog models, they survived metamorphosis. Consistent with an absence of 21-hydroxylase, mutant tadpoles had a 95% reduction of aldosterone in tail tissue, but they retained some corticosterone (∼40% of WT siblings), an amount, however, too low for survival in pomc mutants. Decreased corticosteroid signaling was evidenced by reduced expression of corticosteroid-response gene, klf9, and by impaired negative feedback in the hypothalamus-pituitary-interrenal axis with higher messenger RNA expression levels of crh, pomc, star, and cyp11b2 and an approximately 30-fold increase in tail content of progesterone. In vitro tail-tip culture showed that progesterone can transactivate the frog GR. The inadequate activation of GR by corticosterone in cyp21a2 mutants was likely compensated for by sufficient corticosteroid signaling from other GR ligands to allow survival through the developmental transition from aquatic to terrestrial life. 
    more » « less
  2. Dehydroepiandrosterone (DHEA) is a testosterone/oestrogen precursor and known modulator of vertebrate aggression. Male song sparrows (Melospiza melodia morphna) show high aggression during breeding and nonbreeding life‐history stages when circulatingDHEAlevels are high, and low aggression during molt whenDHEAlevels are low. We previously showed that androgen receptor and aromatasemRNAexpression are higher during breeding and/or nonbreeding in brain regions associated with reproductive and aggressive behaviour, although the potential role ofDHEAin mediating these seasonal changes remained unclear. In the present study, nonbreeding male song sparrows were captured and held in the laboratory under short days (8 : 16 h light/dark cycle) and implanted with s.c.DHEA‐filled or empty (control) implants for 14 days.DHEAimplants increased aggression in a laboratory‐based simulated territorial intrusion. Brains ofDHEA‐implanted birds showed higher aromatasemRNAexpression in the preoptic area (POA) and higher androgen receptormRNAexpression in the periventricular nucleus of the medial striatum (pvMSt) and ventromedial nucleus of the hypothalamus. TheDHEA‐induced increases in aromatase expression in thePOAand androgen receptor expression in the pvMSt are consistent with previously reported seasonal increases in these markers associated with naturally elevatedDHEAlevels. This suggests thatDHEAfacilitates seasonal increases in aggression in nonbreeding male song sparrows by up‐regulating steroid signalling/synthesis machinery in a brain region‐specific fashion.

     
    more » « less
  3. Abstract Negative feedback of the vertebrate stress response via the hypothalamic–pituitary–adrenal (HPA) axis is regulated by glucocorticoid receptors in the brain. Epigenetic modification of the glucocorticoid receptor gene (Nr3c1), including DNA methylation of the promoter region, can influence expression of these receptors, impacting behavior, physiology, and fitness. However, we still know little about the long-term effects of these modifications on fitness. To better understand these fitness effects, we must first develop a non-lethal method to assess DNA methylation in the brain that allows for multiple measurements throughout an organism’s lifetime. In this study, we aimed to determine if blood is a viable biomarker for Nr3c1 DNA methylation in two brain regions (hippocampus and hypothalamus) in adult European starlings (Sturnus vulgaris). We found that DNA methylation of CpG sites in the complete Nr3c1 putative promoter varied among tissue types and was lowest in blood. Although we identified a similar cluster of correlated Nr3c1 putative promoter CpG sites within each tissue, this cluster did not show any correlation in DNA methylation among tissues. Additional studies should consider the role of the developmental environment in producing epigenetic modifications in different tissues. 
    more » « less
  4. Key points

    The angiotensin AT1 receptor expression and protein kinase C (PKC)‐mediated NMDA receptor phosphorylation levels in the hypothalamus are increased in a rat genetic model of hypertension.

    Blocking AT1 receptors or PKC activity normalizes the increased pre‐ and postsynaptic NMDA receptor activity of hypothalamic presympathetic neurons in hypertensive animals.

    Inhibition of AT1 receptor–PKC activity in the hypothalamus reduces arterial blood pressure and sympathetic nerve discharges in hypertensive animals.

    AT1 receptors in the hypothalamus are endogenously activated to sustain NMDA receptor hyperactivity and elevated sympathetic outflow via PKC in hypertension.

    Abstract

    Increased synapticN‐methyl‐d‐aspartate receptor (NMDAR) activity in the hypothalamic paraventricular nucleus (PVN) plays a major role in elevated sympathetic output in hypertension. Although exogenous angiotensin II (AngII) can increase NMDAR activity in the PVN, whether endogenous AT1 receptor–protein kinase C (PKC) activity mediates the augmented NMDAR activity of PVN presympathetic neurons in hypertension is unclear. Here we show that blocking AT1 receptors with losartan or inhibiting PKC with chelerythrine significantly decreased the frequency of NMDAR‐mediated miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of puff NMDA currents of retrogradely labelled spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs). Also, treatment with chelerythrine abrogated the potentiating effect of AngII on mEPSCs and puff NMDA currents of labelled PVN neurons in SHRs. In contrast, neither losartan nor chelerythrine had any effect on mEPSCs or puff NMDA currents in labelled PVN neurons in Wistar–Kyoto (WKY) rats. Furthermore, levels of AT1 receptor mRNA and PKC‐mediated NMDAR phosphorylation in the PVN were significantly higher in SHRs than in WKY rats. In addition, microinjection of losartan or chelerythrine into the PVN substantially reduced blood pressure and renal sympathetic nerve discharges in SHRs but not in WKY rats. Chelerythrine blocked sympathoexcitatory responses to AngII microinjected into the PVN. Our findings suggest that endogenous AT1 receptor–PKC activity is essential for presynaptic and postsynaptic NMDAR hyperactivity of PVN presympathetic neurons and for the augmented sympathetic outflow in hypertension. This information advances our mechanistic understanding of the interplay between angiotensinergic and glutamatergic excitatory inputs in hypertension.

     
    more » « less
  5. Abstract

    Melatonin plays a central role in entraining activity to the day–night cycle in vertebrates. Here, we investigate neuroanatomical substrates of melatonin‐dependent vocal–acoustic behavior in the nocturnal and highly vocal teleost fish, the plainfin midshipman (Porichthys notatus). Using in situ hybridization (ISH) and quantitative real‐time PCR (qPCR), we assess the mRNA distribution and transcript abundance of melatonin receptor subtype 1B (mel1b), shown to be important for vocalization in midshipman fish and songbirds. ISH shows robustmel1bexpression in major nodes of the central vocal and auditory networks in the subpallium, preoptic area (POA), anterior hypothalamus, dorsal thalamus, posterior tuberculum, midbrain torus semicircularis and periaqueductal gray, and hindbrain.Mel1blabel is also abundant in secondary targets of the olfactory, visual, and lateral line systems, as well as telencephalic regions that have been compared to the amygdala, extended amygdala, striatum, septum, and hippocampus of tetrapods. Q‐PCR corroboratesmel1babundance throughout the brain and shows significant increases in the morning compared with nighttime in tissue samples inclusive of the telencephalon and POA, but remains stable in other brain regions. Plasma melatonin levels show expected increase at night. Our findings support the hypothesis that melatonin's stimulatory effects on vocal–acoustic mechanisms in midshipman is mediated, in part, by melatonin binding in vocal, auditory, and neuroendocrine centers. Together with robustmel1bexpression in multiple telencephalic nuclei and sensory systems, the results further indicate an expression pattern comparable to that in birds and mammals that is indicative of melatonin's broad involvement in the modulation of physiology and behavior.

     
    more » « less