skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finite-state parameter space maps for pruning partitions in modularity-based community detection
Abstract Partitioning networks into communities of densely connected nodes is an important tool used widely across different applications, with numerous methods and software packages available for community detection. Modularity-based methods require parameters to be selected (or assume defaults) to control the resolution and, in multilayer networks, interlayer coupling. Meanwhile, most useful algorithms are heuristics yielding different near-optimal results upon repeated runs (even at the same parameters). To address these difficulties, we combine recent developments into a simple-to-use framework for pruning a set of partitions to a subset that are self-consistent by an equivalence with the objective function for inference of a degree-corrected planted partition stochastic block model (SBM). Importantly, this combined framework reduces some of the problems associated with the stochasticity that is inherent in the use of heuristics for optimizing modularity. In our examples, the pruning typically highlights only a small number of partitions that are fixed points of the corresponding map on the set of somewhere-optimal partitions in the parameter space. We also derive resolution parameter upper bounds for fitting a constrained SBM of K blocks and demonstrate that these bounds hold in practice, further guiding parameter space regions to consider. With publicly available code ( http://github.com/ragibson/ModularityPruning ), our pruning procedure provides a new baseline for using modularity-based community detection in practice.  more » « less
Award ID(s):
2140024
PAR ID:
10385286
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Community structure is a fundamental topological characteristic of optimally organized brain networks. Currently, there is no clear standard or systematic approach for selecting the most appropriate community detection method. Furthermore, the impact of method choice on the accuracy and robustness of estimated communities (and network modularity), as well as method‐dependent relationships between network communities and cognitive and other individual measures, are not well understood. This study analyzed large datasets of real brain networks (estimated from resting‐state fMRI from = 5251 pre/early adolescents in the adolescent brain cognitive development [ABCD] study), and = 5338 synthetic networks with heterogeneous, data‐inspired topologies, with the goal to investigate and compare three classes of community detection methods: (i) modularity maximization‐based (Newman and Louvain), (ii) probabilistic (Bayesian inference within the framework of stochastic block modeling (SBM)), and (iii) geometric (based on graph Ricci flow). Extensive comparisons between methods and their individual accuracy (relative to the ground truth in synthetic networks), and reliability (when applied to multiple fMRI runs from the same brains) suggest that the underlying brain network topology plays a critical role in the accuracy, reliability and agreement of community detection methods. Consistent method (dis)similarities, and their correlations with topological properties, were estimated across fMRI runs. Based on synthetic graphs, most methods performed similarly and had comparable high accuracy only in some topological regimes, specifically those corresponding to developed connectomes with at least quasi‐optimal community organization. In contrast, in densely and/or weakly connected networks with difficult to detect communities, the methods yielded highly dissimilar results, with Bayesian inference within SBM having significantly higher accuracy compared to all others. Associations between method‐specific modularity and demographic, anthropometric, physiological and cognitive parameters showed mostly method invariance but some method dependence as well. Although method sensitivity to different levels of community structure may in part explain method‐dependent associations between modularity estimates and parameters of interest, method dependence also highlights potential issues of reliability and reproducibility. These findings suggest that a probabilistic approach, such as Bayesian inference in the framework of SBM, may provide consistently reliable estimates of community structure across network topologies. In addition, to maximize robustness of biological inferences, identified network communities and their cognitive, behavioral and other correlates should be confirmed with multiple reliable detection methods. 
    more » « less
  2. Abstract When people are asked to recall their social networks, theoretical and empirical work tells us that they rely on shortcuts, or heuristics. Cognitive social structures (CSSs) are multilayer social networks where each layer corresponds to an individual’s perception of the network. With multiple perceptions of the same network, CSSs contain rich information about how these heuristics manifest, motivating the question,Can we identify people who share the same heuristics?In this work, we propose a method for identifyingcognitive structureacross multiple network perceptions, analogous to how community detection aims to identifysocial structurein a network. To simultaneously model the joint latent social and cognitive structure, we study CSSs as three-dimensional tensors, employing low-rank nonnegative Tucker decompositions (NNTuck) to approximate the CSS—a procedure closely related to estimating a multilayer stochastic block model (SBM) from such data. We propose the resulting latent cognitive space as an operationalization of the sociological theory ofsocial cognitionby identifying individuals who sharerelational schema. In addition to modeling cognitivelyindependent,dependent, andredundantnetworks, we propose a specific model instance and related statistical test for testing when there issocial-cognitive agreementin a network: when the social and cognitive structures are equivalent. We use our approach to analyze four different CSSs and give insights into the latent cognitive structures of those networks. 
    more » « less
  3. Abstract Generating high-quality synthetic networks with realistic community structure is vital to effectively evaluate community detection algorithms. In this study, we propose a new synthetic network generator called the Edge-Connected Stochastic Block Model (EC-SBM). The goal of EC-SBM is to take a given clustered real-world network and produce a synthetic network that resembles the clustered real-world network with respect to both network and community-specific criteria. In particular, we focus on simulating the internal edge connectivity of the clusters in the reference clustered network. Our performance study on large real-world networks shows that EC-SBM is generally more accurate with respect to network and community criteria than currently used approaches for this problem. Furthermore, we demonstrate that EC-SBM can complete analyses on several real-world networks with millions of nodes. 
    more » « less
  4. In many real-world applications such as social network analysis and online marketing/advertising, community detection is a fundamental task to identify communities (subgraphs) in social networks with high structural cohesiveness. While previous works focus on detecting communities alone, they do not consider the collective influences of users in these communities on other user nodes in social networks. Inspired by this, in this paper, we investigate the influence propagation from some seed communities and their influential effects that result in the influenced communities. We propose a novel problem, named Top-L most Influential Community DEtection (TopL-ICDE) over social networks, which aims to retrieve top-L seed communities with the highest influences, having high structural cohesiveness, and containing user-specified query keywords. To efficiently tackle the TopL-ICDE problem, we design effective pruning strategies to filter out false alarms of seed communities and propose an effective index mechanism to facilitate efficient Top-L community retrieval. We develop an efficient TopL-ICDE answering algorithm by traversing the index and applying our proposed pruning strategies. We also formulate and tackle a variant of TopL-ICDE, named diversified top-L most influential community detection (DTopL-ICDE), which returns a set of L diversified communities with the highest diversity score (i.e., collaborative influences by L communities). We prove that DTopL-ICDE is NP-hard, and propose an efficient greedy algorithm with our designed diversity score pruning. Through extensive experiments, we verify the efficiency and effectiveness of our proposed TopL-ICDE and DTopL-ICDE approaches over real/synthetic social networks under various parameter settings. 
    more » « less
  5. Neural networks tend to achieve better accuracy with training if they are larger -- even if the resulting models are overparameterized. Nevertheless, carefully removing such excess parameters before, during, or after training may also produce models with similar or even improved accuracy. In many cases, that can be curiously achieved by heuristics as simple as removing a percentage of the weights with the smallest absolute value — even though magnitude is not a perfect proxy for weight relevance. With the premise that obtaining significantly better performance from pruning depends on accounting for the combined effect of removing multiple weights, we revisit one of the classic approaches for impact-based pruning: the Optimal Brain Surgeon(OBS). We propose a tractable heuristic for solving the combinatorial extension of OBS, in which we select weights for simultaneous removal, as well as a systematic update of the remaining weights. Our selection method outperforms other methods under high sparsity, and the weight update is advantageous even when combined with the other methods. 
    more » « less