Advances in quantitative genetics have enabled researchers to identify genomic regions associated with changes in phenotype. However, genomic regions can contain hundreds to thousands of genes, and progressing from genomic regions to candidate genes is still challenging. In genome-wide association studies (GWAS) measuring elemental accumulation (ionomic) traits, a mere 5% of loci are associated with a known ionomic gene - indicating that many causal genes are still unknown. To select candidates for the remaining 95% of loci, we developed a method to identify conserved genes underlying GWAS loci in multiple species. For 19 ionomic traits, we identified 14,336 candidates across Arabidopsis, soybean, rice, maize, and sorghum. We calculated the likelihood of candidates with random permutations of the data and determined that most of the top 10% of candidates were orthologous genes linked to GWAS loci across all five species. The candidate list also includes orthologous genes with previously established ionomic functions in Arabidopsis and rice. Our methods highlight the conserved nature of ionomic genetic regulators and enable the identification of previously unknown ionomic genes.
more »
« less
Phylogenetic Comparison of Swainsonine Biosynthetic Gene Clusters among Fungi
Swainsonine is a cytotoxic alkaloid produced by fungi. Genome sequence analyses revealed that these fungi share an orthologous gene cluster, SWN, necessary for swainsonine biosynthesis. To investigate the SWN cluster, the gene sequences and intergenic regions were assessed in organisms containing swnK, which is conserved across all fungi that produce swainsonine. The orders of fungi which contained orthologous swainsonine genes included Pleosporales, Onygenales, Hypocreales, Chaetothyriales, Xylariales, Capnodiales, Microthyriales, Caliciales, Patellariales, Eurotiales, and a species of the Leotiomycetes. SwnK and swnH2 genes were conserved across all fungi containing the SWN cluster; in contrast, swnT and swnA were found in a limited number of fungi containing the SWN cluster. The phylogenetic data suggest that in some orders that the SWN cluster was gained once from a common ancestor while in other orders it was likely gained several times from one or more common ancestors. The data also show that rearrangements and inversions of the SWN cluster happened within a genus as species diverged. Analysis of the intergenic regions revealed different combinations and inversions of open reading frames, as well as absence of genes. These results provide evidence of a complex evolutionary history of the SWN cluster in fungi.
more »
« less
- Award ID(s):
- 2027806
- PAR ID:
- 10385334
- Date Published:
- Journal Name:
- Journal of Fungi
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 2309-608X
- Page Range / eLocation ID:
- 359
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
de_Paula, Renato G; Silva, Roberto N (Ed.)The fungal plant pathogen Slafractonia leguminicola produces two mycotoxins that affect animals: slaframine, which causes slobbers, and swainsonine, which causes locoism. Slafractonia leguminicola contains the swainsonine-associated orthologous gene clusters, “SWN”, which include a multifunctional swnK gene (NRPS-PKS hybrid), swnH1 and swnH2 (nonheme iron dioxygenase genes), swnN and swnR (reductase genes), and swnT (transmembrane transporter). In addition to these genes, two paralogs of swnK, swnK1 (paralog1) and swnk2 (paralog2), are found in S. leguminicola. cDNAs from total mRNA were isolated from the S. leguminicola mycelia grown in the culture plates as well as from leaves inoculated with the fungal mycelia at different time points, and expression pattern of the SWN genes were analyzed using RT-qPCR. The concentrations of swainsonine and slaframine production from this fungus at different time points were also examined using liquid chromatography–mass spectrometry. The timing of gene expression was similar in cultured fungus and inoculated leaves and agreed with our proposed biosynthetic pathway. Substantially more swainsonine was produced than slaframine during time course studies.more » « less
-
Abstract Extensive transcriptional activity occurring in intergenic regions of genomes has raised the question whether intergenic transcription represents the activity of novel genes or noisy expression. To address this, we evaluated cross-species and post-duplication sequence and expression conservation of intergenic transcribed regions (ITRs) in four Poaceae species. Among 43,301 ITRs across the four species, 34,460 (80%) are species-specific. ITRs found across species tend to be more divergent in expression and have more recent duplicates compared to annotated genes. To assess if ITRs are functional (under selection), machine learning models were established inOryza sativa(rice) that could accurately distinguish between phenotype genes and pseudogenes (area under curve-receiver operating characteristic = 0.94). Based on the models, 584 (8%) and 4391 (61%) rice ITRs are classified as likely functional and nonfunctional with high confidence, respectively. ITRs with conserved expression and ancient retained duplicates, features that were not part of the model, are frequently classified as likely-functional, suggesting these characteristics could serve as pragmatic rules of thumb for identifying candidate sequences likely to be under selection. This study also provides a framework to identify novel genes using comparative transcriptomic data to improve genome annotation that is fundamental for connecting genotype to phenotype in crop and model systems.more » « less
-
Goldman, Gustavo H. (Ed.)ABSTRACT Gene expression divergence through evolutionary processes is thought to be important for achieving programmed development in multicellular organisms. To test this premise in filamentous fungi, we investigated transcriptional profiles of 3,942 single-copy orthologous genes (SCOGs) in five related sordariomycete species that have morphologically diverged in the formation of their flask-shaped perithecia. We compared expression of the SCOGs to inferred gene expression levels of the most recent common ancestor of the five species, ranking genes from their largest increases to smallest increases in expression during perithecial development in each of the five species. We found that a large proportion of the genes that exhibited evolved increases in gene expression were important for normal perithecial development in Fusarium graminearum . Many of these genes were previously uncharacterized, encoding hypothetical proteins without any known functional protein domains. Interestingly, the developmental stages during which aberrant knockout phenotypes appeared largely coincided with the elevated expression of the deleted genes. In addition, we identified novel genes that affected normal perithecial development in Magnaporthe oryzae and Neurospora crassa , which were functionally and transcriptionally diverged from the orthologous counterparts in F. graminearum . Furthermore, comparative analysis of developmental transcriptomes and phylostratigraphic analysis suggested that genes encoding hypothetical proteins are generally young and transcriptionally divergent between related species. This study provides tangible evidence of shifts in gene expression that led to acquisition of novel function of orthologous genes in each lineage and demonstrates that several genes with hypothetical function are crucial for shaping multicellular fruiting bodies. IMPORTANCE The fungal class Sordariomycetes includes numerous important plant and animal pathogens. It also provides model systems for studying fungal fruiting body development, as its members develop fruiting bodies with a few well-characterized tissue types on common growth media and have rich genomic resources that enable comparative and functional analyses. To understand transcriptional divergence of key developmental genes between five related sordariomycete fungi, we performed targeted knockouts of genes inferred to have evolved significant upward shifts in expression. We found that many previously uncharacterized genes play indispensable roles at different stages of fruiting body development, which have undergone transcriptional activation in specific lineages. These novel genes are predicted to be phylogenetically young and tend to be involved in lineage- or species-specific function. Transcriptional activation of genes with unknown function seems to be more frequent than ever thought, which may be crucial for rapid adaption to changing environments for successful sexual reproduction.more » « less
-
The V(D)J recombination process rearranges the variable (V), diversity (D), and joining (J) genes in the immunoglobulin (IG) loci to generate antibody repertoires. Annotation of these loci across various species and predicting the V, D, and J genes (IG genes) are critical for studies of the adaptive immune system. However, because the standard gene finding algorithms are not suitable for predicting IG genes, they have been semimanually annotated in very few species. We developed the IGDetective algorithm for predicting IG genes and applied it to species with the assembled IG loci. IGDetective generated the first large collection of IG genes across many species and enabled their evolutionary analysis, including the analysis of the “bat IG diversity” hypothesis. This analysis revealed extremely conserved V genes in evolutionary distant species, indicating that these genes may be subjected to the same selective pressure, for example, pressure driven by common pathogens. IGDetective also revealed extremely diverged V genes and a new family of evolutionary conserved V genes in bats with unusual noncanonical cysteines. Moreover, unlike all other previously reported antibodies, these cysteines are located within complementarity-determining regions. Because cysteines form disulfide bonds, we hypothesize that these cysteine-rich V genes might generate antibodies with noncanonical conformations and could potentially form a unique part of the immune repertoire in bats. We also analyzed the diversity landscape of the recombination signal sequences and revealed their features that trigger the high/low usage of the IG genes.more » « less
An official website of the United States government

