skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments
Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical tweezers) often use video tracking to measure the three-dimensional position of micron-scale beads under an applied force. The force in these experiments is calibrated by comparing the bead trajectory to a thermal motion-based model with the drag coefficient, γ , and trap spring constant, κ , as parameters. Estimating accurate parameters is complicated by systematic biases from spectral distortions, the camera exposure time, parasitic noise, and least-squares fitting methods. However, while robust calibration methods exist that correct for these biases, they are not always used because they can be complex to implement computationally. To address this barrier, we present Tweezepy: a Python package for calibrating forces in SMFS video-tracking experiments. Tweezepy uses maximum likelihood estimation (MLE) to estimate parameters and their uncertainties from a single bead trajectory via the power spectral density (PSD) and Allan variance (AV). It is well-documented, fast, easy to use, and accounts for most common sources of biases in SMFS video-tracking experiments. Here, we provide a comprehensive overview of Tweezepy’s calibration scheme, including a review of the theory underlying thermal motion-based parameter estimates, a discussion of the PSD, AV, and MLE, and an explanation of their implementation.  more » « less
Award ID(s):
1715627
PAR ID:
10385456
Author(s) / Creator(s):
;
Editor(s):
Blank, Kerstin G.
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
12
ISSN:
1932-6203
Page Range / eLocation ID:
e0262028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce Vysics, a vision-and-physics framework for a robot to build an expressive geometry and dynamics model of a single rigid body, using a seconds-long RGBD video and the robot’s proprioception. While the computer vision community has built powerful visual 3D perception algorithms, cluttered environments with heavy occlusions can limit the visibility of objects of interest. However, observed motion of partially occluded objects can imply physical interactions took place, such as contact with a robot or the environment. These inferred contacts can supplement the visible geometry with "physible geometry," which best explains the observed object motion through physics. Vysics uses a vision-based tracking and reconstruction method, BundleSDF, to estimate the trajectory and the visible geometry from an RGBD video, and an odometry-based model learning method, Physics Learning Library (PLL), to infer the "physible" geometry from the trajectory through implicit contact dynamics optimization. The visible and "physible" geometries jointly factor into optimizing a signed distance function (SDF) to represent the object shape. Vysics does not require pretraining, nor tactile or force sensors. Compared with vision-only methods, Vysics yields object models with higher geometric accuracy and better dynamics prediction in experiments where the object interacts with the robot and the environment under heavy occlusion. 
    more » « less
  2. Abstract The mechanically induced symmetry-allowed disrotatory ring openings of cis- and trans-gem-dichlorocyclopropane (gDCC) diesters are demonstrated through sonication and single-molecule force spectroscopy (SMFS) studies. In contrast to the previously reported symmetry-forbidden conrotatory ring opening of alkyl-tethered trans-gDCC, we show that the diester-tethered trans-gDCC primarily undergoes a symmetry-allowed disrotatory pathway even at the high forces (>2 nN) and short-time scales (ms or less) of sonication and SMFS experiments. The quantitative force-rate data obtained from SMFS data is consistent with computational models of transition-state geometry for the symmetry-allowed process, and activation lengths of 1.41 ± 0.02 Å and 1.08 ± 0.03 Å are inferred for the cis-gDCC diester and trans-gDCC diester, respectively. The strong mechanochemical coupling in the trans-gDCC is notable, given that the directionality of the applied force may appear initially to oppose the disrotatory motion associated with the reaction. The stereochemical perturbations of mechanical coupling created by the ester attachments reinforce the complexity that is possible in covalent polymer mechanochemistry and illustrate the breadth of reactivity outcomes that are available through judicious mechanophore design. 
    more » « less
  3. ABSTRACT The analysis of particles bound to surfaces by tethers can facilitate understanding of biophysical phenomena (e.g., DNA–protein or protein–ligand interactions and DNA extensibility). Modeling such systems theoretically aids in understanding experimentally observed motions, and the limitations of such models can provide insight into modeling complex systems. The simulation of tethered particle motion (TPM) allows for analysis of complex behaviors exhibited by such systems; however, this type of experiment is rarely taught in undergraduate science classes. We have developed a MATLAB simulation package intended to be used in academic contexts to concisely model and graphically represent the behavior of different tether–particle systems. We show how analysis of the simulation results can be used in biophysical research using single-molecule force spectroscopy (SMFS). Students in physics, engineering, and chemistry will be able to make connections with principles embedded in the field of study and understand how those principles can be used to create meaningful conclusions in a multidisciplinary context. The simulation package can model any given tether–particle system and allows the user to generate a parameter space with static and dynamic model components. Our simulation was successfully able to recreate generally observed experimental trends by using acoustic force spectroscopy (AFS). Further, the simulation was validated through consideration of the conservation of energy of the tether–bead system, trend analyses, and comparison of particle positional data from actual TPM in silico experiments conducted to simulate data with a parameter space similar to the AFS experimental setup. Overall, our TPM simulator and graphical user interface is primarily for demonstrating behaviors characteristic to TPM in a classroom setting but can serve as a template for researchers to set up TPM simulations to mimic a specific SMFS experimental setup. 
    more » « less
  4. Historical estimates of ocean heat content (OHC) are important for understanding the climate sensitivity of the Earth system, and for tracking changes in the Earth’s energy balance over time. Prior to 2004, these estimates rely primarily on temperature measurements from mechanical and expendable bathythermograph (BT) instruments that were deployed on large scales by naval vessels and ships of opportunity. These BT temperature measurements are subject to well-documented biases, but even the best calibration methods still exhibit residual biases when compared to high-quality temperature datasets. Here, we use a new approach to reduce biases in historical BT data after binning them to a regular grid such as would be used for estimating OHC. Our method consists of an ensemble of artificial neural networks that corrects biases with respect to depth, year, and water temperature in the top 10 meters. A global correction, as well as corrections optimized to specific BT probe types are presented for the top 1800 m. Our approach differs from most prior studies by accounting for multiple sources of error in a single correction, instead of separating the bias into several independent components. These new global and probe-specific corrections perform on par with widely-used calibration methods on a series of metrics that examine the residual temperature biases with respect to a high-quality reference dataset. However, distinct patterns emerge across these various calibration methods when they are extrapolated to BT data not included in our cross-instrument comparison, contributing to uncertainty that will ultimately impact estimates of OHC. 
    more » « less
  5. null (Ed.)
    Abstract Historical estimates of ocean heat content (OHC) are important for understanding the climate sensitivity of the Earth system and for tracking changes in Earth’s energy balance over time. Prior to 2004, these estimates rely primarily on temperature measurements from mechanical and expendable bathythermograph (BT) instruments that were deployed on large scales by naval vessels and ships of opportunity. These BT temperature measurements are subject to well-documented biases, but even the best calibration methods still exhibit residual biases when compared with high-quality temperature datasets. Here, we use a new approach to reduce biases in historical BT data after binning them to a regular grid such as would be used for estimating OHC. Our method consists of an ensemble of artificial neural networks that corrects biases with respect to depth, year, and water temperature in the top 10 m. A global correction and corrections optimized to specific BT probe types are presented for the top 1800 m. Our approach differs from most prior studies by accounting for multiple sources of error in a single correction instead of separating the bias into several independent components. These new global and probe-specific corrections perform on par with widely used calibration methods on a series of metrics that examine the residual temperature biases with respect to a high-quality reference dataset. However, distinct patterns emerge across these various calibration methods when they are extrapolated to BT data that are not included in our cross-instrument comparison, contributing to uncertainty that will ultimately impact estimates of OHC. 
    more » « less